On Gorenstein Projective Dimensions of Unbounded Complexes

Zhongkui Liu , Zhanping Wang

Chinese Annals of Mathematics, Series B ›› 2020, Vol. 41 ›› Issue (5) : 761 -772.

PDF
Chinese Annals of Mathematics, Series B ›› 2020, Vol. 41 ›› Issue (5) : 761 -772. DOI: 10.1007/s11401-020-0232-7
Article

On Gorenstein Projective Dimensions of Unbounded Complexes

Author information +
History +
PDF

Abstract

Let R → S be a ring homomorphism and X be a complex of R-modules. Then the complex of S-modules S R L X in the derived category D(S) is constructed in the natural way. This paper is devoted to dealing with the relationships of the Gorenstein projective dimension of an R-complex X (possibly unbounded) with those of the S-complex S R L X. It is shown that if R is a Noetherian ring of finite Krull dimension and ϕ: RS is a faithfully flat ring homomorphism, then for any homologically degree-wise finite complex X, there is an equality Gpd R X = Gpd S(S R L X). Similar result is obtained for Ding projective dimension of the S-complex S R L X.

Keywords

Gorenstein projective dimension / Ding projective dimension / Faithfully flat ring homomorphism

Cite this article

Download citation ▾
Zhongkui Liu, Zhanping Wang. On Gorenstein Projective Dimensions of Unbounded Complexes. Chinese Annals of Mathematics, Series B, 2020, 41(5): 761-772 DOI:10.1007/s11401-020-0232-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Avramov L L, Foxby H-B. Homological dimensions of unbounded complexes. J. Pure Appl. Algebra, 1991, 71: 129-155

[2]

Bennis D. Rings over which the class of Gorenstein flat modules is closed under extensions. Comm. Algebra, 2009, 37: 855-868

[3]

Christensen L W. Gorenstein Dimensions. Lecture Notes in Mathematics, 2000, Berlin: Springer-Verlag 1747

[4]

Christensen L W. Semi-dualizing complexes and their Auslander categories. Trans. Amer. Math. Soc., 2001, 353: 1839-1883

[5]

Christensen L W, Frankild A, Holm H. On Gorenstein projective, injective and flat dimensions—A functorial description with applications. J. Algebra, 2006, 302: 231-279

[6]

Christensen L W, Holm H. Ascent properties of Auslander categories. Canad. J. Math., 2009, 61: 76-108

[7]

Christensen L W, Koksal F, Liang L. Gorenstein dimensions of unbounded complexes and change of base (with an appendix by Driss Bennis). Sci. China Math., 2017, 60: 401-420

[8]

Christensen L W, Sather-Wagstaff S. Transfer of Gorenstein dimensions along ring homomorphisms. J. Pure Appl. Algebra, 2010, 214: 982-989

[9]

Ding N Q, Li Y L, Mao L X. Strongly Gorenstein flat modules. J. Aust. Math. Soc., 2009, 86: 323-338

[10]

Enochs E E, Jenda O M G. Relative homological algebra, de Gruyter Expositions in Mathematics, 2000, Berlin: Walter de Gruyter 30

[11]

Esmkhani M A, Tousi M. Gorenstein homological dimensions and Auslander categories. J. Algebra, 2007, 308: 321-329

[12]

Gillespie J. Model structures on modules over Ding-Chen rings. Homology, Homotopy Appl., 2010, 12: 61-73

[13]

Holm H. Gorenstein homological dimensions. J. Pure Appl. Algebra, 2004, 189: 167-193

[14]

Iacob A. Gorenstein flat dimension of complexes. J. Math. Kyoto Univ., 2009, 49: 817-842

[15]

Iyengar S, Sather-Wagstaff S. G-dimension over local homomorphisms, applications to the Frobenius endomorphism. Illinois J. Math., 2004, 48: 241-272

[16]

Liu Z K, Ren W. Transfer of Gorenstein dimensions of unbounded complexes along ring homomorphisms. Comm. Algebra, 2014, 42: 3325-3338

[17]

Mahdou N, Tamekkante M. Strongly Gorenstein flat modules and dimensions. Chin. Ann. Math. Ser. B, 2011, 32: 533-548

[18]

Veliche O. Gorenstein projective dimension for complexes. Trans. Amer. Math. Soc., 2006, 358: 1257-1283

[19]

Wang Z P, Liu Z K. Stability of strongly Gorenstein flat modules. Vietnam J. Math., 2014, 42: 171-178

[20]

Wang Z P, Liu Z K. Strongly Gorenstein flat dimensions of complexes. Comm. Algebra, 2016, 44: 1390-1410

[21]

Wu D J. Gorenstein dimensions over ring homomorphisms. Comm. Algebra, 2015, 43: 2005-2028

[22]

Zhang C X, Liu Z K. Rings with finite Ding homological dimensions. Turkish J. Math., 2015, 39: 37-48

[23]

Zhang C X, Wang L M, Liu Z K. Ding projective modules with respect to a semidualizing bimodule. Rocky Mountain J. Math., 2015, 45: 1389-1411

AI Summary AI Mindmap
PDF

166

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/