Chen-Ruan Cohomology and Stringy Orbifold K-Theory for Stable Almost Complex Orbifolds
Chengyong Du , Tiyao Li
Chinese Annals of Mathematics, Series B ›› 2020, Vol. 41 ›› Issue (5) : 741 -760.
Chen-Ruan Cohomology and Stringy Orbifold K-Theory for Stable Almost Complex Orbifolds
Comparing to the construction of stringy cohomology ring of equivariant stable almost complex manifolds and its relation with the Chen-Ruan cohomology ring of the quotient almost complex orbifolds, the authors construct in this note a Chen-Ruan cohomology ring for a stable almost complex orbifold. The authors show that for a finite group G and a G-equivariant stable almost complex manifold X, the G-invariant part of the stringy cohomology ring of (X, G) is isomorphic to the Chen-Ruan cohomology ring of the global quotient stable almost complex orbifold [X/G]. Similar result holds when G is a torus and the action is locally free. Moreover, for a compact presentable stable almost complex orbifold, they study the stringy orbifold K-theory and its relation with Chen-Ruan cohomology ring.
Stable almost complex orbifolds / Chen-Ruan cohomology / Orbifold K-theory / Stringy product
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
/
| 〈 |
|
〉 |