Ghost Symmetries and Multi-fold Darboux Transformations of Extended Toda Hierarchy

Chuanzhong Li

Chinese Annals of Mathematics, Series B ›› 2020, Vol. 41 ›› Issue (5) : 697 -716.

PDF
Chinese Annals of Mathematics, Series B ›› 2020, Vol. 41 ›› Issue (5) : 697 -716. DOI: 10.1007/s11401-020-0228-3
Article

Ghost Symmetries and Multi-fold Darboux Transformations of Extended Toda Hierarchy

Author information +
History +
PDF

Abstract

In this paper, the author constructs ghost symmetries of the extended Toda hierarchy with their spectral representations. After this, two kinds of Darboux transformations in different directions and their mixed Darboux transformations of this hierarchy are constructed. These symmetries and Darboux transformations might be useful in Gromov-Witten theory of ℂP 1.

Keywords

Extended Toda hierarchy / Ghost symmetry / Spectral representations / Hirota quadratic equation / Darboux transformation

Cite this article

Download citation ▾
Chuanzhong Li. Ghost Symmetries and Multi-fold Darboux Transformations of Extended Toda Hierarchy. Chinese Annals of Mathematics, Series B, 2020, 41(5): 697-716 DOI:10.1007/s11401-020-0228-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ueno K, Takasaki K. Toda lattice hierarchy, Group Representations and Systems of Differential Equations, Tokyo, 1982, Amsterdam: North-Holland 1-95 1984

[2]

Carlet G, Dubrovin B, Zhang Y. The extended Toda hierarchy. Mosc. Math. J., 2004, 4: 313-332

[3]

Dubrovin B, Zhang Y. Virasoro symmetries of the extended Toda hierarchy. Comm. Math. Phys., 2004, 250: 161-193

[4]

Milanov T E. Hirota quadratic equations for the extended Toda hierarchy. Duke Math. J., 2007, 138: 161-178

[5]

Carlet G. The extended bigraded Toda hierarchy. J. Phys. A, 2006, 39: 9411-9435

[6]

Li C Z, He J S, Wu K, Cheng Y. Tau function and Hirota bilinear equations for the extended bigraded Toda hierarchy. J. Math. Phys., 2010, 51: 043514

[7]

Li C Z. Solutions of bigraded Toda hierarchy. Journal of Physics A, 2011, 44: 255201

[8]

Li C Z, He J S. Dispersionless bigraded Toda hierarchy and its additional symmetry. Reviews in Mathematical Physics, 2012, 24: 1230003

[9]

Li C Z, He J S, Su Y C. Block type symmetry of bigraded Toda hierarchy. J. Math. Phys., 2012, 53: 013517

[10]

Li C Z, He J S. The extended multi-component Toda hierarchy. Math. Phys., Analyis and Geometry, 2014, 17: 377-407

[11]

Li C Z, He J S. On the extended Z N-Toda hierarchy. Theoretical and Mathematical Physics, 2015, 185: 1-22 arXiv: 1403.0684

[12]

Carlet G, van de Leur J. Hirota equations for the extended bigraded Toda hierarchy and the total descendent potential of ℙ1 orbifolds. J. Phys. A: Math. Theor., 2013, 46: 405205

[13]

Ma W X, Fuchssteiner B. Algebraic structure of discrete zero curvature equations and master symmetries of discrete evolution equations. Journal of Mathematical Physics, 1999, 40: 2400

[14]

Oevel W. Darboux theorems and Wronskian formulas for integrable systems I: Constrained KP flows. Physica A, 1993, 195: 533-576

[15]

Oevel W, Schief W. Squared eigenfunctions of the (modified) KP hierarchy and scattering problems of Loewner type. Rev. Math. Phys., 1994, 6: 1301-1338

[16]

Oevel W. Alfinito E, Martina L, Pempinelli F. Darboux transformations for integrable lattice systems. Nonlinear Physics: Theory and Experiment, 1996, Singapore: World Scientific 233-240

[17]

Aratyn H, Nissimov E, Pacheva S. Virasoro symmetry of constrained KP hierarchies. Phys. Lett. A, 1997 164-175

[18]

Aratyn H, Nissimov E, Pacheva S. A new “dual” symmetry structure of the KP hierarchy. Phys. Lett. A, 1998, 244: 245-255

[19]

Aratyn H, Nissimov E, Pacheva S. Method of squared eigenfunction potentials in integrable hierarchies of KP type. Comm. Math. Phys., 1998, 193: 493-525

[20]

Oevel W, Carillo S. Squared eigenfunction symmetries for soliton equations, Part I. J. Math. Anal. Appl., 1998, 217: 161-178

[21]

Oevel W, Carillo S. Squared eigenfunction symmetries for soliton equations, Part II. J. Math. Anal. Appl., 1998, 217: 179-199

[22]

Cheng J P, He J S, Hu S. The “ghost” symmetry of the BKP hierarchy. J. Math. Phys., 2010, 51: 053514

[23]

Li C Z, Cheng J P, Tian K L Ghost symmetry of the discrete KP hierarchy. Monatsh. Math., 2016, 180: 815-832

[24]

Mateev V B, Salle M A. Darboux Transfromations and Solitons, 1991, Berlin: Springer-Verlag

[25]

Ma W X, Zhang Y J. Darboux transformations of integrable couplings and applications. Reviews in Mathematical Physics, 2018, 30: 1850003

[26]

Adler M, Moerbeke P V. Darboux transforms on band matrices, weights and associated polynomials. International Mathematics Research Notices, 2001, 18: 935-984

[27]

He J S, Zhang L, Cheng Y, Li Y S. Determinant representation of Darboux transformation for the AKNS system. Sci. China A, 2006, 12: 1867-1878

[28]

Li C Z, He J S, Porsezian K. Rogue waves of the Hirota and the Maxwell-Bloch equation. Physical Review E, 2013, 87: 012913

[29]

Li C Z. Sato theory on the q-Toda hierarchy and its extension. Chaos, Solitons and Fractals, 2015, 76: 10-23

[30]

Ma W X. Abundant lumps and their interaction solutions of (3 + 1)-dimensional linear PDEs. Journal of Geometry and Physics, 2018, 133: 10-16

[31]

Yang J Y, Ma W X, Qin Z Y. Lump and lump-soliton solutions to the (2 + 1)-dimensional Ito equation. Analysis and Mathematical Physics, 2018, 8: 427-436

[32]

Zhao H Q, Ma W X. Mixed lump-kink solutions to the KP equation. Computers and Mathematics with Applications, 2017, 74: 1399-1405

[33]

Zhang J B, Ma W X. Mixed lump-kink solutions to the BKP equation. Computers Mathematics with Applications, 2017, 74: 591-596

[34]

Ma W X, Yong X L, Zhang H Q. Diversity of interaction solutions to the (2 + 1)-dimensional Ito equation. Computers Mathematics with Applications, 2018, 75: 289-295

AI Summary AI Mindmap
PDF

108

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/