Time-Like Conformal Homogeneous Hypersurfaces with Three Distinct Principal Curvatures

Yanbin Lin , Ying Lü , Changping Wang

Chinese Annals of Mathematics, Series B ›› 2020, Vol. 41 ›› Issue (5) : 679 -696.

PDF
Chinese Annals of Mathematics, Series B ›› 2020, Vol. 41 ›› Issue (5) : 679 -696. DOI: 10.1007/s11401-020-0227-4
Article

Time-Like Conformal Homogeneous Hypersurfaces with Three Distinct Principal Curvatures

Author information +
History +
PDF

Abstract

A hypersurface x(M) in Lorentzian space R 1 4 is called conformal homogeneous, if for any two points p, q on M, there exists σ, a conformal transformation of R 1 4, such that σ(x(M)) = x(M), σ(x(p)) = x(q). In this paper, the authors give a complete classification for regular time-like conformal homogeneous hypersurfaces in R 1 4 with three distinct principal curvatures.

Keywords

Lorentzian metric / Conformal metric / Conformal space form / Conformal homogeneous / Time-like hypersurface

Cite this article

Download citation ▾
Yanbin Lin, Ying Lü, Changping Wang. Time-Like Conformal Homogeneous Hypersurfaces with Three Distinct Principal Curvatures. Chinese Annals of Mathematics, Series B, 2020, 41(5): 679-696 DOI:10.1007/s11401-020-0227-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li T Z. Möbius homogeneous hypersurfaces with three distinct principal curvatures in S n+1. Chin. Ann. Math. Ser. B, 2017, 38(5): 1131-1144

[2]

Li T Z, Ma X, Wang C P. Möbius homogeneous hypersurfaces with two distinct principal curvatures in S n+1. Ark. Mat., 2013, 51(2): 315-328

[3]

Li, T. Z. and Nie, C. X., Conformal geometry of hypersurfaces in Lorentz space forms, Geometry, 2013. https://doi.org/10.1155/2013/549602

[4]

Li T Z, Nie C X. Spacelike Dupin hypersurfaces in Lorentzian space forms. J. Math. Soc. Japan, 2018, 70(2): 463-480

[5]

Li X X, Song H R. On the regular space-like hypersurfaces with parallel Blaschke tensors in the de Sitter space S 1 m+1. J. of Math. (PRC), 2016, 36(6): 1183-1200

[6]

Li X X, Song H R. Regular space-like hypersurfaces in S 1 m+1 with parallel para-Blaschke tensors. Acta. Math. Sinica (Engl. Ser.), 2017, 33(10): 1361-1381

[7]

Lin Y B, Y, Wang C P. Spacelike Möbius hypersurfaces in four dimensional Lorentzian space form. Acta. Math. Sinica (Engl. Ser.), 2019, 35(4): 519-536

[8]

Nie C X, Wu C X. Space-like hypersurfaces with parallel conformal second fundamental forms in the conformal space. Acta. Math. Sinica (Chin. Ser.), 2008, 51(4): 685-692

[9]

Petrov A Z. Einstein Spaces, 1969, Oxford-Edinburgh-New York: Pergamon Press

[10]

Wang C P. Möbius geometry of submanifolds in S n. Manuscripta Math., 1998, 96: 517-534

[11]

Wang C P, Xie Z X. Classification of Möbius homogeneous surfaces in S 4. Ann. Global Anal. Geom., 2014, 46: 241-257

AI Summary AI Mindmap
PDF

80

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/