The Dimension Paradox in Parameter Space of Cosine Family

Xiaojie Huang , Weiyuan Qiu

Chinese Annals of Mathematics, Series B ›› 2020, Vol. 41 ›› Issue (4) : 645 -656.

PDF
Chinese Annals of Mathematics, Series B ›› 2020, Vol. 41 ›› Issue (4) : 645 -656. DOI: 10.1007/s11401-020-0223-8
Article

The Dimension Paradox in Parameter Space of Cosine Family

Author information +
History +
PDF

Abstract

It is proved in this paper that the union of escaping parameter rays without endpoints for the cosine family S κ (z) = e κ(e z + ez), where κ ∈ ℂ is a parameter, has Hausdorff dimension 1, which implies that the ray endpoints alone have Hausdorff dimension 2. This shows that Karpińska’s dimension paradox occurs also in the parameter plane of the cosine family.

Keywords

Dimension paradox / Hausdorff dimension / Parameter rays / Dynamic rays

Cite this article

Download citation ▾
Xiaojie Huang, Weiyuan Qiu. The Dimension Paradox in Parameter Space of Cosine Family. Chinese Annals of Mathematics, Series B, 2020, 41(4): 645-656 DOI:10.1007/s11401-020-0223-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Milnor J. Dynamics in One Complex Variable, 2006 3rd ed. Princeton: Princeton University Press

[2]

Devaney R L, Krych M. Dynamics of exp(z). Ergodic Theory and Dynamical Systems, 1984, 4: 35-52

[3]

McMullen C. Area and Hausdorff dimension of Julia sets of entire functions. Trans. Amer. Math. Soc., 1987, 300: 329-342

[4]

Karpiñska B. Hausdorff dimension of the hairs without endpoints for λexp(z). C. R. Acad. Sci. Paris Ser. I: math., 1999, 328: 1039-1044

[5]

Bergweiler W. Karpiñska paradox in demension 3. Duke Math., 2010, 3: 599-630

[6]

Eremenko, A.E., On the iteration of entire functions, Dynamical Systems and Ergodic Theory (Warsaw, 1986), Banach Center Publ., 23, Warsaw, 1989, 339–345.

[7]

Eremenko A E, Lyubich MY. Dynamical properties of some classes of entire function. Ann. Inst. Fourier(Grenoble), 1992, 42: 989-1020

[8]

Schleicher D, Zimmer J. Escaping points of exponential maps. J. Lond. Math. Soc., 2003, 2: 2380-2400

[9]

Rottenfusser G, Schleicher D. Escaping points of the cosine family, Transcendental Dynamics and Complex Analysis, 2008, Cambridge: Cambridge Univ. Press 396-424

[10]

Schleicher D. The dynamical fine structure of iterated cosine maps and a dimension paradox. Duke Math. J., 2007, 136(2): 343-356

[11]

Forster M, Rempe L, Schleicher D. Classification of escaping exponential maps. Proc. Amer. Math. Soc., 2008, 136: 651-663

[12]

Forster M, Schleicher D. Parameter rays in the space of exponential maps. Ergodic Theory and Dynamical Systems, 2009, 29: 515-544

[13]

Qiu W Y. Hausdorff dimension of the M-set of λexp(z). Acta. Math. Sinica (N.S.), 1994, 10: 362-368

[14]

Bailesteanu M, Balan H V, Schleicher D. Hausdorff dimension of exponential parameter rays and their endpoints. Nonlinearity, 2008, 21: 113-120

[15]

Tian T. Parameter rays for the consine family. Journal of Fudan University, 2011, 50: 10-22

AI Summary AI Mindmap
PDF

108

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/