Long-Time Dynamics for a Nonlinear Viscoelastic Kirchhoff Plate Equation

Xiaoming Peng , Yadong Shang , Huafei Di

Chinese Annals of Mathematics, Series B ›› 2020, Vol. 41 ›› Issue (4) : 627 -644.

PDF
Chinese Annals of Mathematics, Series B ›› 2020, Vol. 41 ›› Issue (4) : 627 -644. DOI: 10.1007/s11401-020-0222-9
Article

Long-Time Dynamics for a Nonlinear Viscoelastic Kirchhoff Plate Equation

Author information +
History +
PDF

Abstract

This paper is devoted to study the long-time dynamics for a nonlinear viscoelastic Kirchhoff plate equation. Under some growth conditions of g and f, the existence of a global attractor is granted. Furthermore, in the subcritical case, this global attractor has finite Hausdorff and fractal dimensions.

Keywords

Global attractor / Kirchhoff plate / Memory kernel / Finite Hausdorff dimensions

Cite this article

Download citation ▾
Xiaoming Peng, Yadong Shang, Huafei Di. Long-Time Dynamics for a Nonlinear Viscoelastic Kirchhoff Plate Equation. Chinese Annals of Mathematics, Series B, 2020, 41(4): 627-644 DOI:10.1007/s11401-020-0222-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lagnese J. Boundary Stabilization of Thin Plates, 1989, Philadelphia: SIAM

[2]

Lagnese J, Lions J L. Modelling, Analysis and Control of Thin Plates, 1988, Paris: Masson

[3]

Yang Z J. Longtime behavior for a nonlinear wave equation arising in elasto-plastic flow. Math. Methods Appl. Sci., 2009, 32: 1082-1104

[4]

Yang Z J. Global attractors and their Hausdorff dimensions for a class of Kirchhoff models. J. Math. Phys., 2010, 51: 032701

[5]

Yang Z J. Finite-dimensional attractors for the Kirchhoff models. J. Math. Phys., 2010, 51: 092703

[6]

Yang Z J. Finite-dimensional attractors for the Kirchhoff models with critical exponents. J. Math. Phys., 2012, 53: 032702

[7]

Yang Z J, Jin B X. Global attractor for a class of Kirchhoff models. J. Math. Phys., 2009, 50: 032701

[8]

Chueshov I, Lasiecka I. Existence, uniqueness of weak solutions and global attractors for a class of nonlinear 2D Kirchhoff-Boussinesq models. Diserete Contin. Dyn. Syst., 2006, 15: 777-809

[9]

Chueshov I, Lasiecka I. On global attractor for 2D Kirchhoff-Boussinesq model with supercritical nonlinearity. Commun. Partial Differential Equations, 2011, 36: 67-99

[10]

Jorge Silva M, Ma T F. On a viscoelastic plate equation with history setting and perturbation of p-Laplacian type. IMA J. Appl. Math., 2013, 78: 1130-1146

[11]

Jorge Silva M, Ma T F. Long-time dynamics for a class of Kirchhoff models with memory. J. Math. Phys., 2013, 54: 021505

[12]

Narciso V. Long-time behavior of a nonlinear viscoelastic beam equation with past history. Math. Meth. Appl. Sci., 2015, 38: 775-784

[13]

Conti M, Geredeli P. Existence of smooth global attractors for nonlinear viscoelastic equations with memory. J. Evol. Equ., 2015, 15: 533-558

[14]

Barreto R, Lapa E, Rivera J. Decay rates for viscoelastic plates with memory. J. Elasticity, 1996, 44: 61-87

[15]

Jorge Silva M, Muñoz Rivera J, Racke R. On a class of nonlinear viscoelastic kirchhoff plates: Well-posedness and general decay rates. Appl. Math. Optim., 2016, 73: 165-194

[16]

Giorgi C, Munñoz Rivera J, Pata V. Global attractors for a semilinear hyperbolic equation in viscoelasticity. J. Math. Anal. Appl., 2001, 260: 83-99

[17]

Pata V, Zucchi A. Attractors for a damped hyperbolic equation with linear memory. Adv. Math. Sci. Appl., 2001, 11: 505-529

[18]

Dafermos C. Asymptotic stability in viscoelasticity. Arch. Ration. Mech. Anal., 1970, 37: 297-308

[19]

Babin A, Vishik M. Attractors of Evolution Equations, 1992, Amsterdam: North-Holland Co.

[20]

Hale J K. Asymptotic Behavior of Dissipative Systems, 1988, Providence, RI: Amer. Math. Soc.

[21]

Ladyzhenskaya O. Attractors for Semigroups and Evolution Equations, 1991, Cambridge: Cambridge University Press

[22]

Temam R. Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 1997 2nd ed. New York: Springer-Verlag

[23]

Chueshov I, Lasiecka I. Von Karman Evolution Equations, 2010, New York: Springer-Verlag

[24]

Chueshov I. Dynamics of Quasi-stable Dissipative System, 2015, Cham: Springer-Verlag

[25]

Bucci F, Toundykov D. Finite-dimensional attractor for a composite system of wave/plate equations with localized damping. Nonlinearity, 2010, 23: 2271-2306

[26]

Bucci F, Chueshov I. Long-time dynamics of a coupled system of nonlinear wave and thermoelastic plate equations. Diserete Contin. Dyn. Syst., 2008, 22: 557-586

AI Summary AI Mindmap
PDF

104

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/