The Equivalence of Hypercontractivity and Logarithmic Sobolev Inequality for q (−1 ≤ q ≤ 1) -Ornstein-Uhlenbeck Semigroup

Lunchuan Zhang

Chinese Annals of Mathematics, Series B ›› 2020, Vol. 41 ›› Issue (4) : 615 -626.

PDF
Chinese Annals of Mathematics, Series B ›› 2020, Vol. 41 ›› Issue (4) : 615 -626. DOI: 10.1007/s11401-020-0221-x
Article

The Equivalence of Hypercontractivity and Logarithmic Sobolev Inequality for q (−1 ≤ q ≤ 1) -Ornstein-Uhlenbeck Semigroup

Author information +
History +
PDF

Abstract

In this paper the author proves the equivalence of hypercontractivity and logarithmic Sobolev inequality for q-Ornstein-Uhlenbeck semigroup U t (q) = Γ q(et I) (−1 ≤ q ≤ 1), where Γ q is a q-Gaussian functor.

Keywords

q-Ornstein-Uhlenbeck semigroup / Hypercontractivity / Logarithmic Sobolev inequality

Cite this article

Download citation ▾
Lunchuan Zhang. The Equivalence of Hypercontractivity and Logarithmic Sobolev Inequality for q (−1 ≤ q ≤ 1) -Ornstein-Uhlenbeck Semigroup. Chinese Annals of Mathematics, Series B, 2020, 41(4): 615-626 DOI:10.1007/s11401-020-0221-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Nelson E. A quartic interaction in two dimensions, 1966, Cambridge: M. I. T. Press

[2]

Glimm J. Boson fields with nonlinear self-interaction in two dimensions. Comm. Math. Phys., 1968, 8: 12-25

[3]

Høegh-Krohn R, Simon B. Hypercontractive semigroups and two dimensional self-coupled Bose fields. J. Funct. Anal., 1972, 9: 279-293

[4]

Segal I. Constraction of non-linear local quantum processes I. Ann. of Math., 1970, 92: 462-481

[5]

Nelson E. The free Markov field. J. Funct. Anal., 1973, 12: 211-227

[6]

Gross L. Logarithmic Sobolev inequalities. Amer. J. Math., 1975, 97: 1061-1083

[7]

Gross L. Existence and uniqueness of physical ground states. J. Funct. Anal., 1972, 10: 52-109

[8]

Gross L. Hypercontractivity and logarithmic Sobolev inequalities for the Clifford Dirichlet form. Duke Math. J., 1975, 43: 383-396

[9]

Segal I. A non-commutative extension of abstract integration. Ann. of Math., 1953, 57: 401-457

[10]

Lindsay J M. Gaussian hypercontractivity revisited. J. Funct. Anal., 1990, 92: 313-324

[11]

Lindsay J M, Meyer P A. Fermionic Hypercontractivity, 1992, River Edge, NJ: World Sci. Publ.

[12]

Carlen E A, Lieb E H. Optimal hypercontractivity for Fermi fields and related noncommutative integration inequalities. Comm. Math. Phys., 1993, 155: 27-46

[13]

Biane P. Free hypercontractivity. Comm. Math. Phys., 1997, 184: 457-474

[14]

Boźejko M, Speicher R. Completely positive maps on Coxeter groups, deformed commutation relations, and operator spaces. Math. Ann., 1994, 300: 97-120

[15]

Voiculescu D V, Dykema K J, Nica A. Free Random Variables, 1992, Providence, RI: American Mathematical Society

[16]

Olkiewicz R, Zegarlinski B. Hypercontractivity in noncommutative L p spaces. J. Funct. Anal., 1999, 161(1): 246-285

[17]

Boz̀ejko M, Kümmerer B, Speicher R. q-Gaussian processes: Non-commutative and classical aspects. Comm. Math. Phys., 1997, 185: 129-154

[18]

Boz̀ejko M, Speicher R. An example of a generalized Brownian motion. Comm.. Math. Phys., 1991, 137: 519-531

[19]

Kosaki H. Applications of uniform convexity of noncommutative L p spaces. Trans. of the AMS, 1984, 283(1): 265-282

[20]

Cipriani F. Dirichlet forms and Markovian semigroups on standard forms of von Neumann algebras. J. Funct. Anal., 1997, 147: 259-300

[21]

Zhang L C, Guo M Z. The characterization of a class of quantum Markov semigroups and associated Dirichlet forms, ICM 2010, 15 minutes talks, Sessions 9. Functional analysis and applications, Short communications and poster sessions, Hindustan, 2010, India: Book Agency 8

[22]

Zhang L C, Guo M Z. The characterization of a class of quantum Markov semigroups and the associated operator-valued Dirichlet forms based on Hilbert W*-modules. Acta Math. Sinica (English series), 2013, 29(5): 857-866

[23]

Zhang L C, Guo M Z. Beurling-Deny correspondence of a class of quantum Markov semigroups and the associated operator-valued Dirichlet forms, 2014, Seoul: ICM 2014 8

[24]

Zhang L C. Hilbert C*-module theory and applications, 2014, Beijing: China Science Press

[25]

Albeverio S, Høegh-Krohn R. Dirichlet forms and Markov semigroups on C*-algebras. Comm. Math. Phys., 1977, 56: 173-187

[26]

Davies E B, Lindsay J M. Non-commutative symmetric Markov semigroups. Math. Z., 1992, 210: 379-411

[27]

Guido D, Isola T, Scarlatti S. Non-symmetric Dirichlet forms on semi-finite von Neumann algebras. J. Funct. Anal., 1996, 135: 50-75

[28]

Accardi L, Fagnola F. Quantum Interacting Particle Systems, 2002, New Jersey, London, Singapore, Hong Kong: World Scientific

[29]

Fuglede B, Kadison R V. Determinant theory in finite factors. Ann. of Math., 1952, 55(3): 520-530

AI Summary AI Mindmap
PDF

349

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/