Structural Properties of Homomorphism Dilation Systems

Deguang Han , David R. Larson , Bei Liu , Rui Liu

Chinese Annals of Mathematics, Series B ›› 2020, Vol. 41 ›› Issue (4) : 585 -600.

PDF
Chinese Annals of Mathematics, Series B ›› 2020, Vol. 41 ›› Issue (4) : 585 -600. DOI: 10.1007/s11401-020-0219-4
Article

Structural Properties of Homomorphism Dilation Systems

Author information +
History +
PDF

Abstract

Inspired by some recent development on the theory about projection valued dilations for operator valued measures or more generally bounded homomorphism dilations for bounded linear maps on Banach algebras, the authors explore a pure algebraic version of the dilation theory for linear systems acting on unital algebras and vector spaces. By introducing two natural dilation structures, namely the canonical and the universal dilation systems, they prove that every linearly minimal dilation is equivalent to a reduced homomorphism dilation of the universal dilation, and all the linearly minimal homomorphism dilations can be classified by the associated reduced subspaces contained in the kernel of synthesis operator for the universal dilation.

Keywords

Linear systems / Linearly minimal homomorphism dilation systems / Principle and universal dilations / Equivalent dilation systems

Cite this article

Download citation ▾
Deguang Han, David R. Larson, Bei Liu, Rui Liu. Structural Properties of Homomorphism Dilation Systems. Chinese Annals of Mathematics, Series B, 2020, 41(4): 585-600 DOI:10.1007/s11401-020-0219-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Arveson W. Dilation theory yesterday and today, A Glimpse at Hilbert Space Operators. Oper. Theory Adv. Appl., 2010, Basel: Birkhauser Verlag 99-123 207

[2]

Casazza P G, Han D G, Larson D R. Frames for Banach spaces, The Functional and Harmonic Analysis of Wavelets and Frames (San Antonio, TX, 1999). Contemp. Math., 1999, 247: 149-182

[3]

Gabardo J P, Han D G. Frames associated with measurable spaces. Adv. Comput. Math., 2003, 18: 127-147

[4]

Gabardo J P, Han D G. Frame representations for group-like unitary operator systems. J. Operator Theory, 2003, 49: 223-244

[5]

Hadwin D W. Dilations and Hahn decompositions for linear maps. Canad. J. Math., 1981, 33: 826-839

[6]

Han D G. Dilations and completions for Gabor systems. J. Fourier Anal. Appl., 2009, 15: 201-217

[7]

Han D G, Larson D R. Frames, bases and group representations. Mem. Amer. Math. Soc., 2000, 697: 1-94

[8]

Han, D. G., Larson, D. R., Liu, B. and Liu, R., Operator-valued measures, dilations, and the theory of frames, Mem. Amer. Math. Soc., 229(1075), 2014.

[9]

Han D G, Larson D R, Liu B, Liu R. Dilations for systems of imprmimitivity acting on Banach spaces. J. Funct. Anal., 2014, 266: 6914-6937

[10]

Han D G, Larson D R, Liu B, Liu R. Dilations of Frames, Operator Valued Measures and Bounded Linear Maps. Contemp. Math., 2014, Providence, RI: Amer. Math. Soc. 33-53 626

[11]

Han D G, Larson D R, Liu R. Dilations of operator-valued measures with bounded p-variations and framings on Banach spaces. J. Funct. Anal., 2018, 274: 1466-1490

[12]

Kadison R. On the orthogonalization of operator representations. Amer. J. Math., 1955, 77: 600-622

[13]

Naimark M A. Spectral functions of a symmetric operator. Izv. Akad. Nauk SSSR Ser. Mat., 1940, 4: 277-318

[14]

Naimark M A. On a representation of additive operator set functions. Dokl. Acad. Sci. SSSR, 1943, 41: 373-375

[15]

Paulsen V. Completely Bounded Maps and Operator Algebras, 2002, Cambridge: Cambridge University Press

[16]

Stinespring W F. Positive functions on C*-algebras. Proc. Amer. Math. Soc., 1955, 6: 211-216

AI Summary AI Mindmap
PDF

138

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/