On the Compactness of Grunsky Differential Operators

Li Wu , Yuliang Shen

Chinese Annals of Mathematics, Series B ›› 2020, Vol. 41 ›› Issue (4) : 559 -572.

PDF
Chinese Annals of Mathematics, Series B ›› 2020, Vol. 41 ›› Issue (4) : 559 -572. DOI: 10.1007/s11401-020-0217-6
Article

On the Compactness of Grunsky Differential Operators

Author information +
History +
PDF

Abstract

Grunsky operators play an important role in classical geometric function theory and in the study of Teichmüller spaces. The Grunsky map is known to be holomorphic on the universal Teichmüller space. In this paper the authors deal with the compactness of a Grunsky differential operator. They will give upper and lower estimates of the essential norm of a Grunsky differential operator and discuss when a Grunsky differential operator is a p-Schatten class operator.

Keywords

Universal Teichmüller space / Beltrami coefficient / Grunsky operator / Compact operator / p-Schatten class operator / Essential norm

Cite this article

Download citation ▾
Li Wu, Yuliang Shen. On the Compactness of Grunsky Differential Operators. Chinese Annals of Mathematics, Series B, 2020, 41(4): 559-572 DOI:10.1007/s11401-020-0217-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ahlfors L V. Quasiconformal reflections. Acta Math., 1963, 109: 291-301

[2]

Becker J, Pommenerke Ch. Über die quasikonforme fortsetzung schlichter funktionen. Math. Z., 1978, 161: 69-80

[3]

Bers L. A non-standard intergral equation with applications to quasiconformal mappings. Acta Math., 1966, 116: 113-134

[4]

Cui G. Integrably asymptotic affine homeomorphisms of the circle and Teichmüller spaces. Sci. China Ser. A, 2000, 43: 267-279

[5]

Douady A, Earle C J. Conformally natural extension of homeomorphisms of the circle. Acta Math., 1986, 157: 23-48

[6]

Earle C J, Gardiner F P, Lakic N. Asymptotic Teichmüller space, Part I: The complex structure. Contemp. Math., 2000, 256: 17-38

[7]

Earle C J, Gardiner F P, Lakic N. Asymptotic Teichmüller space, Part II: The metric structure. Contemp. Math., 2004, 355: 187-219

[8]

Earle C J, Markovic V, Saric D. Barycentric extension and the Bers embedding for asymptotic Teichmüller space. Contemp. Math., 2002, 311: 87-105

[9]

Earle C J, Nag S. Conformally natural reflections in Jordan curves with applications to Teichmüller spaces, Holomorphic Functions and Moduli II, 1988, New York: Springer-Verlag 179-194

[10]

Gardiner F P, Lakic N. Quasiconformal Teichmüller Theory, 2000, Providence, RI: Amer. Math. Soc.

[11]

Gardiner F P, Sullivan D. Symmetricstructures on a closed curve. Amer. J. Math., 1992, 114: 683-736

[12]

Guo H. Integrable Teichmüller spaces. Sci. China Ser. A, 2000, 43: 47-58

[13]

Jones G L. The Grunsky operator and the Schatten ideals. Michigan Math. J., 1999, 46: 93-100

[14]

Krushkal S L. Grunsky coefficient inequalities, Carathéodory metric and extremal quasiconformal mappings. Comment. Math. Helv., 1989, 64: 650-660

[15]

Krushkal S L. Strengthening pseudoconvexity of finite-dimensional Teichmüller spaces. Math. Ann., 1991, 290: 681-687

[16]

Lehto O. Univalent Functions and Teichmüller Spaces, 1986, New York: Springer-Verlag

[17]

Luecking D. Representation and duality for weighted spacesof analytic functions, Indiana. Univ. Math. J., 1985, 34: 319-336

[18]

Nag S. The Complex Analytic Theory of Teichmüller Spaces, 1988, New York: Wiley-Interscience

[19]

Pommerenke Ch. Univalent Functions, 1975, Güttingen: Vandenhoeck and Ruprecht

[20]

Pommerenke Ch. Boundary Behaviour of Conformal Maps, 1992, Berlin: Springer-Verlag

[21]

Schur I. Ein Satz über quadratische Formen mit komplexen Koeffizienten. Amer. J. Math., 1945, 67: 472-480

[22]

Shapiro J H. The essential norm of a composition operator. Ann. Math., 1987, 125: 375-404

[23]

Shen Y. On Grunsky operator. Science in China, 2007, 50: 1805-1817

[24]

Shen Y. Faber polynomials with applications to univalent functions with quasiconformal extensions. Science in China, 2009, 52: 2121-2131

[25]

Shen Y. The asymptotic Teichmüller space and the asymptotic Grunsky map. Proc. Roy. Soc. Edinburgh Sect. A, 2010, 140: 651-672

[26]

Shen Y. On Grunsky inequalities and the exact domain of variability of Grunsky functional. Israel J. Math., 2011, 183: 399-416

[27]

Shen Y. Weil-Petersson Teichmüller space. Amer. J. Math., 2018, 140(4): 1041-1074

[28]

Shen Y, Wei H. Universal Teichmüller space and BMO. Adv. Math., 2013, 234: 129-148

[29]

Shiga H. On analytic and geometric properties of Teichmüller spaces. J. Math. Kyoto. Univ., 1984, 24: 441-452

[30]

Tang S, Shen Y. Integrable Teichmüller space. J. Math. Anal. Appl., 2018, 465(1): 658-672

[31]

Takhtajan L, Teo L. Weil-Petersson metric on the universal Teichmüller space. Mem. Amer. Math. Soc., 2006, 183: 861

[32]

Tang S, Wu C, Feng X. The essential norm of the Grunsky operator. Acta Math. Sinica, Chin. Ser., 2017, 60: 253-260

[33]

Zhai, G., Integral representation for holomorphic functions on quasidisks and the universal Teichmüller space, Master Thesis, Soochow University, 2008.

[34]

Zhu K. Operator Theory in Function Spaces, 2007 Second Edition Providence, RI: American Mathematical Society

[35]

Zuravlev I V. Univalent functions and Teichmuüller spaces. Soviet Math. Dokl., 1980, 21: 252-255

AI Summary AI Mindmap
PDF

182

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/