Anderson Localization for Jacobi Matrices Associated with High-Dimensional Skew Shifts

Jia Shi , Xiaoping Yuan

Chinese Annals of Mathematics, Series B ›› 2020, Vol. 41 ›› Issue (4) : 495 -510.

PDF
Chinese Annals of Mathematics, Series B ›› 2020, Vol. 41 ›› Issue (4) : 495 -510. DOI: 10.1007/s11401-020-0213-x
Article

Anderson Localization for Jacobi Matrices Associated with High-Dimensional Skew Shifts

Author information +
History +
PDF

Abstract

In this paper, the authors establish Anderson localization for a class of Jacobi matrices associated with skew shifts on $\mathbb{T}^d$, d ≥ 3.

Keywords

Anderson localization / Jacobi matrices / Skew shifts

Cite this article

Download citation ▾
Jia Shi, Xiaoping Yuan. Anderson Localization for Jacobi Matrices Associated with High-Dimensional Skew Shifts. Chinese Annals of Mathematics, Series B, 2020, 41(4): 495-510 DOI:10.1007/s11401-020-0213-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Basu S. On bounding the Betti numbers and computing the Euler characteristic of semi-algebraic sets. Discrete Comput. Geom., 1999, 22(1): 1-18

[2]

Basu S, Pollack R, Roy M-F. On the combinatorial and algebraic complexity of quantifier elimination. J. ACM, 1996, 43(6): 1002-1045

[3]

Bourgain J. Estimates on Green’s functions, localization and the quantum kicked rotor model. Ann. of Math. (2), 2002, 156(1): 249-294

[4]

Bourgain J. Green’s function estimates for lattice Schrödinger operators and applications, 2005, Princeton, NJ: Princeton University Press

[5]

Bourgain J. Anderson localization for quasi-periodic lattice Schrödinger operators on ℤd, d arbitrary. Geom. Funct. Anal., 2007, 17(3): 682-706

[6]

Bourgain J, Goldstein M. On nonperturbative localization with quasi-periodic potential. Ann. of Math. (2), 2000, 152(3): 835-879

[7]

Bourgain J, Goldstein M, Schlag W. Anderson localization for Schrödinger operators on ℤ with potentials given by the skew-shift. Comm. Math. Phys., 2001, 220(3): 583-621

[8]

Bourgain J, Goldstein M, Schlag W. Anderson localization for Schrödinger operators on Z 2 with quasi-periodic potential. Acta Math., 2002, 188(1): 41-86

[9]

Bourgain J, Jitomirskaya S. Anderson localization for the band model, Geometric Aspects of Functional Analysis, 2000, Berlin: Springer-Verlag 67-79

[10]

Bourgain J, Kachkovskiy I. Anderson localization for two interacting quasiperiodic particles. Geom. Funct. Anal., 2019, 29(1): 3-43

[11]

Gromov M. Entropy, homology and semialgebraic geometry. Astérisque, 1987, 145–146(5): 225-240

[12]

Han R. Shnol’s theorem and the spectrum of long range operators. Proc. Amer. Math. Soc., 2019, 147(7): 2887-2897

[13]

Jian W, Shi Y, Yuan X. Anderson localization for one-frequency quasi-periodic block operators with long-range interactions. J. Math. Phys., 2019, 60(6): 063504

[14]

Krüger H. Multiscale analysis for ergodic Schrödinger operators and positivity of Lyapunov exponents. J. Anal. Math., 2011, 115: 343-387

AI Summary AI Mindmap
PDF

144

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/