Construction of Lagrangian Submanifolds in Complex Hyperquadric

Chiakuei Peng , Xiaowei Xu

Chinese Annals of Mathematics, Series B ›› 2020, Vol. 41 ›› Issue (3) : 465 -478.

PDF
Chinese Annals of Mathematics, Series B ›› 2020, Vol. 41 ›› Issue (3) : 465 -478. DOI: 10.1007/s11401-020-0211-z
Article

Construction of Lagrangian Submanifolds in Complex Hyperquadric

Author information +
History +
PDF

Abstract

In this paper, the authors present a method to construct the minimal and H-minimal Lagrangian submanifolds in complex hyperquadric Q n from submanifolds with special properties in odd-dimensional spheres. The authors also provide some detailed examples.

Keywords

Lagrangian submanifold / Minimal / H-minimal

Cite this article

Download citation ▾
Chiakuei Peng, Xiaowei Xu. Construction of Lagrangian Submanifolds in Complex Hyperquadric. Chinese Annals of Mathematics, Series B, 2020, 41(3): 465-478 DOI:10.1007/s11401-020-0211-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anciaux H, Castro I. Construction of Hamiltonian-minimal Lagrangian submanifolds in the complex Euclidean space. Results Math., 2011, 60: 325-349

[2]

Castro I, Li H, Urbano F. Hamiltonian-minimal Lagrangian submainifolds in complex space forms. Pacific Journal of Mathematics, 2006, 227: 43-63

[3]

Castro I, Urbano F. New examples of minimal Lagrangian tori in the complex projective plan. Manuscriota Mathematicae, 1994, 85: 265-281

[4]

Castro I, Urbano F. Examples of unstable Hamiltonian-minimal Lagrangian tori in C2. Compositio Mathematicae, 1998, 111: 1-14

[5]

Chen B Y. Classification of spherical Lagrangian submanifolds in complex Euclidean spaces. In. Electron. J. Gem., 2013, 6: 1-8

[6]

Chen B Y, Garay O J. Classification of Hamiltonian-stationary Lagrangian submanifolds of constant curvature in ℂℙ3 with positive nullity. Nolinear Analysis, 2009, 71: 2640-2659

[7]

Chen Q, Hu S, Xu X W. Construction of Lagrangian submanifolds in ℂℙn. Pacific Journal of Mathematics, 2012, 258(1): 31-49

[8]

Helen F, Romon P. Hamiltonian stationary Lagrangian surfaces in C2. Communication in Analysis and Geometry, 2002, 10: 79-126

[9]

Helen F, Romon P. Hamiltonian stationary tori in ℂℙ2. Proceedings of London Mathematical Society, 2005, 90: 472-496

[10]

Li H, Ma H, Wei G. A class of minimal Lagrangian submanifolds in complex hyperquadrics. Geom Dedicata, 2012, 158: 137-148

[11]

Ma H. Hamiltonian stationary surfaces in ℂℙ2. Annals of Global Analysis and Geometry, 2005, 27: 1-16

[12]

Ma H, Ma Y J. Totally real minimal tori in ℂℙ2. Math. Z., 2005, 249: 241-267

[13]

Ma H, Ohnita Y. Hamiltonian stability of the Gauss images of homogeneous isoparametric hyper-surfaces. I, J. Differential Geom., 2014, 97(2): 275-348

[14]

Ma H, Schmies M. Examples of Hamiltonian sationary Lagrangian tori in ℂℙ2. Geometry Dedicata, 2006, 118: 173-183

[15]

Mironov A E. On the Hamiltonian-minimal Lagrangian tori in the ℂℙ2. Sobornik Mathematics Journal, 2003, 44: 1039-1042

[16]

Mironov A E. New examples of Hamiltonian-minimal and minimal Lagrangian manifolds in Cn and ℂℙn. Sobornik Mathematics, 2004, 195: 89-102

[17]

Mironov A E. On a family of conformal flat minimal Lagrangian tori in ℂℙ3. Mathematical Notes, 2007, 81: 329-337

[18]

Mironov A E, Zuo D F. On a family of conformal flat Hamiltonian-minimal tori in ℂℙ3. International Matematics Research Notices, 2008

[19]

Oh Y G. Volume minimization of Lagrangian submanifolds under Hamiltonian deformations. Math. Z., 1993, 212: 175-192

[20]

Palmer B. Hamiltonian minimality and Hamiltonian stability of Gauss maps. Diff. Geom. Appl., 1997, 7: 51-58

AI Summary AI Mindmap
PDF

105

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/