A Note on Randomly Weighted Sums of Dependent Subexponential Random Variables

Fengyang Cheng

Chinese Annals of Mathematics, Series B ›› 2020, Vol. 41 ›› Issue (3) : 441 -450.

PDF
Chinese Annals of Mathematics, Series B ›› 2020, Vol. 41 ›› Issue (3) : 441 -450. DOI: 10.1007/s11401-020-0209-6
Article

A Note on Randomly Weighted Sums of Dependent Subexponential Random Variables

Author information +
History +
PDF

Abstract

The author obtains that the asymptotic relations $\mathbb{P}\left( {\sum\limits_{i = 1}^n {{\theta _i}{X_i}} >x} \right) \sim \mathbb{P}\left( {\mathop {\max }\limits_{1 \le m \le n} \sum\limits_{i = 1}^m {{\theta _i}{X_i}} >x} \right) \sim \mathbb{P}\left( {\mathop {\max {\theta _i}{X_i}}\limits_{1 \le i \le n} >x} \right) \sim \sum\limits_{i = 1}^n \mathbb{P}{\left( {{\theta _i}{X_i} >x} \right)}$ hold as x → ∞, where the random weights θ 1,..., θ n are bounded away both from 0 and from ∞ with no dependency assumptions, independent of the primary random variables X 1,..., X n which have a certain kind of dependence structure and follow non-identically subexponential distributions. In particular, the asymptotic relations remain true when X 1,..., X n jointly follow a pairwise Sarmanov distribution.

Keywords

Randomly weighted sums / Subexponential distributions / Ruin probabilities / Insurance and financial risks

Cite this article

Download citation ▾
Fengyang Cheng. A Note on Randomly Weighted Sums of Dependent Subexponential Random Variables. Chinese Annals of Mathematics, Series B, 2020, 41(3): 441-450 DOI:10.1007/s11401-020-0209-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen J, Xu H, Cheng F. The product distribution of dependent random variables with applications to a discrete-time risk model. Comm. Statist. Theory Methods, 2019, 48: 3325-3340

[2]

Cheng D. Randomly weighted sums of dependent random variables with dominated variation. J. Math. Anal. Appl., 2014, 420: 1617-1633

[3]

Cheng F, Cheng D. Randomly weighted sums of dependent subexponential random variables with applications to risk theory. Scandinavian Actuarial Journal, 2018, 2018(3): 191-202

[4]

Cline D B H, Samorodnitsky G. Subexponentiality of the product of independent random variables. Stochastic Process. Appl., 1994, 49: 75-98

[5]

Foss S, Korshunov D, Zachary S. An Introduction to Heavy-tailed and Subexponential Distributions, 2013, New York: Springer-Verlag

[6]

Hazra R S, Maulik K. Tail behavior of randomly weighted sums. Adv. in Appl. Probab., 2012, 44: 794-814

[7]

Ko B, Tang Q. Sums of dependent nonnegative random variables with subexponential tails. J. Appl. Probab., 2008, 45: 85-94

[8]

Kotz S, Balakrishnan N, Johnson N L. Continuous Multivariate Distributions, 2009, New York: Models and Applications, Wiley

[9]

Lee M T. Properties and applications of the Sarmanov family of bivariate distributions. Commun. Stat. Theory Methods, 1996, 25: 1207-1222

[10]

Shen X, Lin Z, Zhang Y. Uniform estimate for maximum of randomly weighted sums with applications to ruin theory. Methodol. Comput. Appl. Probab., 2009, 11: 669-685

[11]

Tang Q, Tsitsiashvili G. Random weighted sums of subexponential random variables with application to ruin theory. Extremes, 2003, 6: 171-188

[12]

Tang Q, Yuan Z. Randomly weighted sums of subexponential random variables with application to capital allocation. Extremes, 2014, 17: 467-493

[13]

Yi L, Chen Y, Su C. Approximation of the tail probability of randomly weighted sums of dependent random variables with dominated variation. J. Math. Anal. Appl., 2011, 376: 365-372

[14]

Yu C, Wang Y, Cheng D. Tail behavior of the sums of dependent and heavy-tailed random variables. J. Korean Statis. Soc., 2015, 44(1): 12-27

[15]

Zhang Y, Cheng F. Asymptotic tail behavior of a random sum with conditionally dependent subex-ponential summands. Commun. Stat. Theory Methods, 2017, 46: 5888-5895

[16]

Zhang Y, Shen X, Weng C. Approximation of the tail probability of randomly weighted sums and applications. Stochastic Process. Appl., 2009, 119: 655-675

AI Summary AI Mindmap
PDF

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/