Gradient Estimates for p-Laplacian Lichnerowicz Equation on Noncompact Metric Measure Space

Liang Zhao , Ming Shen

Chinese Annals of Mathematics, Series B ›› 2020, Vol. 41 ›› Issue (3) : 397 -406.

PDF
Chinese Annals of Mathematics, Series B ›› 2020, Vol. 41 ›› Issue (3) : 397 -406. DOI: 10.1007/s11401-020-0206-9
Article

Gradient Estimates for p-Laplacian Lichnerowicz Equation on Noncompact Metric Measure Space

Author information +
History +
PDF

Abstract

In this paper, the authors obtain the gradient estimates for positive solutions to the weighted p-Laplacian Lichnerowicz equation ${\Delta _{p,f}}u + c{u^\sigma } = 0$ on noncompact smooth metric measure space, where c is a nonnegative constant, and p, σ (1 < p ≤ 2, σp - 1) are real constants. Moreover, by the gradient estimate, they can get the corresponding Liouville theorem and Harnack inequality.

Keywords

p-Laplacian / Positive solutions / Liouville theorem

Cite this article

Download citation ▾
Liang Zhao, Ming Shen. Gradient Estimates for p-Laplacian Lichnerowicz Equation on Noncompact Metric Measure Space. Chinese Annals of Mathematics, Series B, 2020, 41(3): 397-406 DOI:10.1007/s11401-020-0206-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bakry D, Émery M. Diffusions Hypercontractives, Séminaire de Probilitiés XIX, 1983/1984. Lecture Notes in Math., 1985, 1123: 177-206

[2]

Benalili M, Maliki Y. Solving p-Laplacian equations on complete manifolds. Electron. J. Differ. Equ., 2006, 2006: 1-9

[3]

Chen D G, Xiong C W. Gradient estimates for doubly nonlinear diffusion equations. Nonlinear Ana., 2015, 112: 156-164

[4]

Choquet-Bruhat Y, Isenberg J, Pollack D. The Einstein-scalar field constraints on asymptotically Euclidean manifolds. Chin. Ann. Math. Ser. B, 2006, 27: 31-52

[5]

Druet O. Generalized scalar curvature type equations on compact Riemannian manifolds. Proc. Roy. Soc. Edinburgh Sect. A, 2000, 130: 767-788

[6]

Evans L C. Weak convergence methods for nonlinear partial differential equations, Conference Board of the Mathematical Sciences, 1990, Providence, RI: American Mathematical Society

[7]

Kotschwar B, Ni L. Local gradient estimates of p-harmonic functions, 1/H-flow, and an entropy formula. Ann. Sci. Ec. Norm. Supér, 2009, 42(1): 1-36

[8]

Ma L. Liouville type theorem and uniform bound for the Lichnerowicz equation and the Ginzburg-Landau equation. C. R. Math. Acad. Sci. Paris, 2010, 348(17–18): 993-996

[9]

Ma L, Sun Y H, Tang Y. Heat flow method for Lichnerowicz type equations on closed manifolds. Z. Angew. Math. Phys., 2012, 63(2): 261-270

[10]

Ma L, Wei J C. Stability and multiple solutions to Einstein-scalar field Lichnerowicz equation on manifolds. J. Math. Pures Appl., 2013, 99(2): 174-186

[11]

Ma L, Xu X W. Uniform bound and a non-existence result for Lichnerowicz equation in the whole n-space. C. R. Mathematique Ser. I, 2009, 347(13–14): 805-808

[12]

Song X F, Zhao L. Gradient estimates for the elliptic and parabolic Lichnerowicz equations on compact manifolds. Z. Angew. Math. Phys., 2010, 61: 655-662

[13]

Wang Y Z, Chen W Y. Gradient estimates and entropy monotonicity formula for doubly nonlinear diffusion equations on Riemannian manifolds. Math. Meth. App. Sci., 2014, 37: 2772-2781

[14]

Wang Y Z, Li H Q. Lower bound estimates for the first eigenvalue of the weighted p-Laplacian on smooth metric measure spaces. Differential Geom. Appl., 2016, 45: 23-42

[15]

Wang Y Z, Yang J, Chen W Y. Gradient estimates and entropy formulae for weighted p-heat equations on smooth metric measure spaces. Acta Math. Sci., 2013, 33(4): 963-974

[16]

Zhao L. Harnack inequality for parabolic Lichnerowicz equations on complete noncompact Riemannian manifolds. Boundary Value Problems, 2013

[17]

Zhao L. Gradient estimates for a simple parabolic Lichnerowicz equation. Osaka J. Math., 2014, 51: 245-256

[18]

Zhao L. Liouville theorems for Lichnerowicz equation on complete noncompact manifolds. Funkcial. Ekvac., 2014, 57: 163-172

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/