Kloosterman Sums and a Problem of D. H. Lehmer

Ping Xi , Yuan Yi

Chinese Annals of Mathematics, Series B ›› 2020, Vol. 41 ›› Issue (3) : 361 -370.

PDF
Chinese Annals of Mathematics, Series B ›› 2020, Vol. 41 ›› Issue (3) : 361 -370. DOI: 10.1007/s11401-020-0203-z
Article

Kloosterman Sums and a Problem of D. H. Lehmer

Author information +
History +
PDF

Abstract

A classical problem of D. H. Lehmer suggests the study of distributions of elements of Z/p Z of opposite parity to the multiplicative inverse mod p. Zhang initiated this problem and found an asymptotic evaluation of the number of such elements. In this paper, an asymptotic formula for the fourth moment of the error term of Zhang is proved, from which one may see that Zhang’s error term is optimal up to the logarithm factor. The method also applies to the case of arbitrary positive integral moments.

Keywords

D. H. Lehmer problem / Kloosterman sum / Moment

Cite this article

Download citation ▾
Ping Xi, Yuan Yi. Kloosterman Sums and a Problem of D. H. Lehmer. Chinese Annals of Mathematics, Series B, 2020, 41(3): 361-370 DOI:10.1007/s11401-020-0203-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cobeli C, Zaharescu A. Generalization of a problem of Lehmer. Manuscripta Math., 2001, 104: 301-307

[2]

Fouvry E, Ganguly S, Kowalski E, Michel Ph. Gaussian distribution for the divisor function and Hecke eigenvalues in arithmetic progressions. Comment. Math. Helv., 2014, 89: 979-1014

[3]

Guy R K. Unsolved Problems in Number Theory, 1994, New York: Springer-Verlag

[4]

Katz, N. M., Gauss Sums, Kloosterman Sums, and Monodromy Groups, Annals of Mathematics Studies, 116, Princeton University Press, Princeton, NJ, 1988.

[5]

Liu H N, Zhang W P. Hybrid mean value for a generalization of a problem of D. H. Lehmer. Acta Arith., 2007, 130: 1-17

[6]

Lu Y M, Yi Y. On the generalization of the D. H. Lehmer problem. Acta Math. Sin., 2009, 25: 1269-1274

[7]

Ruzsa I Z, Schinzel A. An application of Kloosterman sums. Compositio Math., 1995, 96: 323-330

[8]

Shparlinski I E. On a generalisation of a Lehmer problem. Math. Z., 2009, 263: 619-631

[9]

Xi P. Gaussian distributions of Kloosterman sums: Vertical and horizontal. Ramanujan J., 2017, 43: 493-511

[10]

Xu Z F, Zhang T P. High-dimensional D. H. Lehmer problem over short intervals. Acta Math. Sin. (Engl. Ser.), 2014, 30: 213-228

[11]

Yi Y, Zhang W P. On the generalization of a problem of D. H. Lehmer. Kyushu J. Math., 2002, 56: 235-241

[12]

Zhang W P. On a problem of D. H. Lehmer and its generalization. Compositio Math., 1993, 86: 307-316

[13]

Zhang W P. On a problem of D. H. Lehmer and its generalization. II. Compositio Math., 1994, 91: 47-56

[14]

Zhang W P. A problem of D. H. Lehmer and its mean square value formula. Japan. J. Math. (N.S.), 2003, 29: 109-116

[15]

Zhang W P, Xu Z B, Yi Y. A problem of D. H. Lehmer and its mean square value formula. J. Number Theory, 2003, 103: 197-213

AI Summary AI Mindmap
PDF

163

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/