Schwarz Lemma at the Boundary on the Classical Domain of Type $\mathcal{III}$

Taishun Liu , Xiaomin Tang , Wenjun Zhang

Chinese Annals of Mathematics, Series B ›› 2020, Vol. 41 ›› Issue (3) : 335 -360.

PDF
Chinese Annals of Mathematics, Series B ›› 2020, Vol. 41 ›› Issue (3) : 335 -360. DOI: 10.1007/s11401-020-0202-0
Article

Schwarz Lemma at the Boundary on the Classical Domain of Type $\mathcal{III}$

Author information +
History +
PDF

Abstract

Let $\mathcal{R}_\mathcal{III}(n)$ be the classical domain of type $\mathcal{III}$ with n ≥ 2. This article is devoted to a deep study of the Schwarz lemma on $\mathcal{R}_\mathcal{III}(n)$ via not only exploring the smooth boundary points of $\mathcal{R}_\mathcal{III}(n)$) but also proving the Schwarz lemma at the smooth boundary point for holomorphic self-mappings of $\mathcal{R}_\mathcal{III}(n)$.

Keywords

Holomorphic mapping / Schwarz lemma at the boundary / The classical domain of type $\mathcal{III}$

Cite this article

Download citation ▾
Taishun Liu, Xiaomin Tang, Wenjun Zhang. Schwarz Lemma at the Boundary on the Classical Domain of Type $\mathcal{III}$. Chinese Annals of Mathematics, Series B, 2020, 41(3): 335-360 DOI:10.1007/s11401-020-0202-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ahlfors L V. An extension of Schwarz’s lemma. Trans. Amer. Math. Soc, 1938, 43(3): 359-364

[2]

Elin M, Jacobzon F, Levenshtein M, Shoikhet D. The Schwarz Lemma: Rigidity and Dynamics, Harmonic and Complex Analysis and Its Applications, 2014, Berlin: Springer-Verlag 135-230

[3]

Garnett J B. Bounded Analytic Functions, 1981, Academic Press: New York

[4]

Hua L K. Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains, Translations of Mathematical Monographs, 6, Amer. Math. Soc, Providence RI, 1963

[5]

Kim K, Lee H. Schwarz’s Lemma from a Differential Geometric Viewpoint, 2011, Bangalore: IISc Press

[6]

Wu H. Normal families of holomorphic mappings. Acta Math., 1967, 119(1): 193-233

[7]

Yau S T. A general Schwarz lemma for Kahler manifolds. Amer. J. Math., 1978, 100(1): 197-203

[8]

Rodin B. Schwarz’s lemma for circle packings. Invent. Math., 1987, 89(2): 271-289

[9]

Cartan H. Les fonction de deux variables complexs et Ie probleme de la representation analytique. J. de Math. Pures et Appl, 1931, 96: 1-114

[10]

Look K H. Schwarz lemma and analytic invariants. Sci Sinica Mathematics, 1958, 7(5): 453-504

[11]

Burns D M, Krantz S G. Rigidity of holomorphic mappings and a new Schwarz lemma at the boundary. J. Amer. Math. Soc, 1994, 7(3): 661-676

[12]

Huang X J. A preservation principle of extremal mappings near a strongly pseudoconvex point and its applications. Illinois J. Math., 1994, 38(2): 283-302

[13]

Huang X J. A boundary rigidity problem for holomorphic mappings on some weakly pseudoconvex domains. Can. J. Math., 1995, 47(2): 405-420

[14]

Huang X J. Some applications of Bell’s theorem to weakly pseudoconvex domains. Pacific J. Math., 1993, 158(2): 305-315

[15]

Krantz S G. The Schwarz lemma at the boundary. Complex Var. Elliptic Equ., 2011, 56(5): 455-468

[16]

Tang X M, Liu T S, Zhang W J. Schwarz lemma at the boundary and rigidity property for holomorphic mappings on the unit ball of Cn. Proc. Amer. Math. Soc, 2017, 145(4): 1709-1716

[17]

Liu T S, Tang X M. Schwarz lemma at the boundary of strongly pseudoconvex domain in Cn. Math. Ann., 2016, 366(1-2): 655-666

[18]

Liu T S, Wang J F, Tang X M. Schwarz lemma at the boundary of the unit ball in Cn and its applications. J. Geom. Anal, 2015, 25(3): 1890-1914

[19]

Bonk M. On Bloch’s constant. Proc. Amer. Math. Soc, 1990, 110(4): 889-894

[20]

Gong S, Liu T S. Distortion therorems for biholomorphic convex mappings on bounded convex circular domains. Chin. Ann. Math. Ser. B, 1999, 20(3): 297-304

[21]

Liu T S, Ren G B. The growth theorem of convex mappings on bounded convex circular domains. Science in China, 1998, 41(2): 123-130

[22]

Zhang W J, Liu T S. On growth and covering theorems of quasi-convex mappings in the unit ball of a complex Banach space. Science in China, 2002, 45(12): 1538-1547

[23]

Liu T S, Tang X M. Distortion theorem at extreme points for biholomorphic starlike mappings on the unit ball. Chinese J. Contemp. Math., 2016, 37(1): 45-52

[24]

Liu T S, Tang X M. A boundary Schwarz lemma on the classical domain of type I. Sci. China Math., 2017, 60(7): 1239-1258

[25]

Tang X M, Liu T S, Zhang W J. Schwarz lemma at the boundary on the classical domain of type II. J. Geom. Anal, 2018, 28(2): 1610-1634

[26]

Liu T S. The Growth Theorems, Covering Theorems and Distortion Theorems for Biholomorphic Mappings on Classical Domains, Doctoral Dissertion, University of Science and Technology of China, Hefei, 1989

[27]

Krantz S G. Function Theory of Several Complex Variables (2nd ed.), 2001, Providence RI: Amer. Math. Soc

[28]

Liu T S, Ren G B. Decomposition therorem of normalized biholomorphic convex mapping. J. Reine Angew. Math., 1998, 496: 1-13

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/