PDF
Abstract
In this paper, the author characterizes the subgroups of a finite metacyclic group K by building a one to one correspondence between certain 3-tuples (k,l,β) ∈ ℕ3 and all the subgroups of K. The results are applied to compute some subgroups of K as well as to study the structure and the number of p-subgroups of K, where p is a fixed prime number. In addition, the author gets a factorization of K, and then studies the metacyclic p-groups, gives a different classification, and describes the characteristic subgroups of a given metacyclic p-group when p ≥ 3. A “reciprocity” relation on enumeration of subgroups of a metacyclic group is also given.
Keywords
Metacyclic groups
/
Subgroups
/
Metacyclic p-groups
/
Characteristic subgroups
Cite this article
Download citation ▾
Xu Yang.
The Subgroups of Finite Metacyclic Groups.
Chinese Annals of Mathematics, Series B, 2020, 41(2): 241-266 DOI:10.1007/s11401-020-0197-6
| [1] |
Baer R. Engelsche elemente nöetherscher gruppen. Math. Ann., 1957, 133: 256-270
|
| [2] |
Basmaji B G. On the isomorphisms of two metacyclic groups. Proc. Amer. Math. Soc., 1969, 22: 175-182
|
| [3] |
Beyl, F. R., The classification of metacyclic p-groups, and other applications of homological algebra to group theory, Ph.D. thesis, Cornell University, 1972.
|
| [4] |
Birkhoff G. Subgroups of abelian groups. Proc. London Math. Soc., 1935, 38: 385-401
|
| [5] |
Carter R W. Nilpotent self-normalizing subgroups of soluble groups. Math. Zeit., 1961, 75: 136-139
|
| [6] |
Curran M J. The automorphim group of a nonsplit metacyclic p-group. Arch. Math., 2008, 90: 483-489
|
| [7] |
Gerhards L. Über die struktur bizyklischer gruppen. J. reine angew. Math., 1970, 241: 180-199
|
| [8] |
Hall M. Theory of Groups, 1959, New York: Macmillan
|
| [9] |
Hempel C E. Metacyclic groups. Comm. in Algebra, 2000, 28: 3865-3897
|
| [10] |
Huppert B. Endliche Gruppen I, 1967, Berlin, New York: Springer-Verlag
|
| [11] |
King B W. Presentations of metacyclic groups. Bull. Aus. Math. Soc., 1973, 8: 101-131
|
| [12] |
Liedahl S. Enumeration of metacyclic p-groups. J. Algebra, 1996, 186: 436-446
|
| [13] |
Lindenberg W. Struktur und klassifizierung bizyklischer p-gruppen. Gesellsch. Math. Datenverarbeitung. Bonn. Ber., 1971, 40: 1-36
|
| [14] |
Newman M F, Xu M Y. Metacyclic groups of prime-power order. Adv. in Math (China), 1988, 17: 106-107
|
| [15] |
Rédei L. Endliche p-Gruppen, 1989, Budapest: Akademiai Kiadó
|
| [16] |
Sim H S. Metacyclic groups of odd order. Proc. London Math. Soc., 1994, 69: 47-71
|
| [17] |
Xu M Y, Qu H P. Finite p-groups, 2010, Beijing: Beijing University Press (in Chinese)
|
| [18] |
Xu M Y, Zhang Q H. A classification of metacyclic 2-groups. Alg. Colloq., 2006, 13: 25-34
|
| [19] |
Zhang Y D. The Construction of Finite Groups, 1982, Beijing: Science Press (in Chinese)
|