Heat Kernel on Analytic Subvariety

Luobin Fang

Chinese Annals of Mathematics, Series B ›› 2020, Vol. 41 ›› Issue (2) : 227 -240.

PDF
Chinese Annals of Mathematics, Series B ›› 2020, Vol. 41 ›› Issue (2) : 227 -240. DOI: 10.1007/s11401-020-0196-7
Article

Heat Kernel on Analytic Subvariety

Author information +
History +
PDF

Abstract

In this paper, the author extends Peter Li and Tian Gang’s results on the heat kernel from projective varieties to analytic varieties. The author gets an upper bound of the heat kernel on analytic varieties and proves several properties. Moreover, the results are extended to vector bundles. The author also gets an upper bound of the heat operators of some Schröndinger type operators on vector bundles. As a corollary, an upper bound of the trace of the heat operators is obtained.

Keywords

Heat kernel / Analytic subvariety / Schröndinger operator

Cite this article

Download citation ▾
Luobin Fang. Heat Kernel on Analytic Subvariety. Chinese Annals of Mathematics, Series B, 2020, 41(2): 227-240 DOI:10.1007/s11401-020-0196-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bei F. Sobolev spaces and Bochener Laplacian on complex projective varieties and stratified pseudomanifolds. Journal of GHeometric Analysis, 2016, 27(1): 1-51

[2]

Cheeger J, Yau S T. A lower bound for the heat kernel. Comm. Pure Appl. Math., 1981, 34: 198-222

[3]

Cheng S Y, Li P, Yau S T. Heat equations on minimal submanifolds and their applications. Amer. J. Math., 1984, 106: 1033-1065

[4]

Gaffney M. The harmonic operator for exterior differential forms. Proc. Nat. Acad. Sci. U.S.A., 1951, 37: 48-50

[5]

Grigor’yan A. Heat kernel and analysis on manifolds, 2009, Providence, RI: Amer. Math. Soc.

[6]

Hess H, Schrader R, Uhlenbrock D A. Domination of semigroups and generalization of Kato’s inequality. Duke Math. J., 1997, 44(4): 893-904

[7]

Hess H, Schrader R, Uhlenbrock D A. Kato’s inequality and spectral distribution of Laplacians on compact Riemannian manifolds. J. Differetial Geom., 1980, 15(1): 27-37

[8]

Li P. Geometric analysis, Cambridge Studies in Advancd Mathematics, 2012, New York: Cambridge University Press

[9]

Li P, Tian G. On the heat kernel of the Bergmann metric on algebraic varieties. J. Amer. Math. Soc., 1995, 8(4): 857-877

[10]

Li P, Yau S T. On the parabolic kernel of the Schrödinger operator. Acta. Math., 1986, 156: 153-201

[11]

Markvorsen S. On the heat kernel comparison theorems for minimal submanifolds. Proceedings of the American Mathematical Society, 1986, 97(3): 479-482

[12]

Reed M, Simon B. Methods of modern mathematical physics, I, Functional Analysis, 1978, New York, London: Academic Press

AI Summary AI Mindmap
PDF

149

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/