An Explicit Ladder of Homotopy Categories

Huanhuan Li

Chinese Annals of Mathematics, Series B ›› 2020, Vol. 41 ›› Issue (2) : 209 -226.

PDF
Chinese Annals of Mathematics, Series B ›› 2020, Vol. 41 ›› Issue (2) : 209 -226. DOI: 10.1007/s11401-020-0195-8
Article

An Explicit Ladder of Homotopy Categories

Author information +
History +
PDF

Abstract

For an upper triangular matrix ring, an explicit ladder of height 2 of triangle functors between homotopy categories is constructed. Under certain conditions, the author obtains a localization sequence of homotopy categories of acyclic complexes of injective modules.

Keywords

Triangular matrix ring / Homotopy category / Recollememt

Cite this article

Download citation ▾
Huanhuan Li. An Explicit Ladder of Homotopy Categories. Chinese Annals of Mathematics, Series B, 2020, 41(2): 209-226 DOI:10.1007/s11401-020-0195-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Auslander M, Reiten I, SmalØ S O. Representation Theory of Artin Algebras. Cambridge Studies in Adv. Math., 1995, Cambridge: Cambridge Univ. Press 36

[2]

Beilinson A A, Bernstein J, Deligne P. Faisceaux Perves. Astérique, 1982, France: Soc. Math. 100

[3]

Buchweitz, R. O., Maximal Cohen-Macaulay modules and Tate-cohomology over Gorenstein rings, unpublished manuscrip, 1987, http://hdl.handle.net/1807/16682.

[4]

Chen X W. Singularity categories, Schur functors and triangular matrix rings. Algebr. Represent. Theory, 2009, 12: 181-191

[5]

Chen X W. The singularity category of an algebra with radical square zero. Documenta Mathematica., 2011, 16: 921-936

[6]

Chen X W. A recollement of vector bundles. Bulletin of the London Mathematical Society, 2012, 44: 271-284

[7]

Gabriel P, Zisman M. Calculus of fractions and homotopy theory. Ergebnisse der Mathematik und ihrer Grenzgebiete, 1967, New York: Springer-Verlag Band, 35

[8]

Han Y. Recollements and Hochschild theory. J. Algebra, 2014, 397: 535-547

[9]

Hügel L, König S, Liu Q H, Yang D. Ladders and simplicity of derived module categories. J. Algebra, 2017, 472: 15-66

[10]

Keller B. Derived categories and their uses. Handbook of Algebra, 1996, Amsterdam: North-Holland 671-701 1

[11]

König S. Tilting complexes, perpendicular categories and recollements of derived module categories of rings. J. Pure Appl. Algebra, 1991, 73: 211-232

[12]

König S, Zimmermann A. Derived Equivalences for Group Rings, 1998, Berlin: Springer-Verlag

[13]

Krause H. The stable derived category of a noetherian scheme. Compositio Math., 2005, 141: 1128-1162

[14]

Li H. The injective Leavitt complex. Algebr. Represent. Theory, 2018, 21(4): 833-858

[15]

Orlov D. Triangulated categories of sigularities and D-branes in Landau-Ginzburg models. Trudy Steklov Math. Institute, 2004, 204: 240-262

[16]

Xiong B L, Zhang P. Gorenstein-projective modules over triangular matrix artin algebras. J. Algebra Appl., 2012, 11(4): 1802-1812

AI Summary AI Mindmap
PDF

155

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/