The Schwarzian Derivative of Harmonic Mappings in the Plane

Liping Nie , Zongxin Yang

Chinese Annals of Mathematics, Series B ›› 2020, Vol. 41 ›› Issue (2) : 193 -208.

PDF
Chinese Annals of Mathematics, Series B ›› 2020, Vol. 41 ›› Issue (2) : 193 -208. DOI: 10.1007/s11401-020-0194-9
Article

The Schwarzian Derivative of Harmonic Mappings in the Plane

Author information +
History +
PDF

Abstract

In this paper, the authors introduce a definition of the Schwarzian derivative of any locally univalent harmonic mapping defined on a simply connected domain in the complex plane. Using the new definition, the authors prove that any harmonic mapping f which maps the unit disk onto a convex domain has Schwarzian norm ∥S f∥ ≤ 6. Furthermore, any locally univalent harmonic mapping f which maps the unit disk onto an arbitrary regular n-gon has Schwarzian norm $\left\| {{S_f}} \right\| \leq {8 \over 3}$.

Keywords

Schwarzian derivative / Schwarzian norm / Harmonic mapping

Cite this article

Download citation ▾
Liping Nie, Zongxin Yang. The Schwarzian Derivative of Harmonic Mappings in the Plane. Chinese Annals of Mathematics, Series B, 2020, 41(2): 193-208 DOI:10.1007/s11401-020-0194-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chuaqui M, Duren P, Osgood B. The Schwarzian derivative for harmonic mappings. J. Anal. Math., 2003, 91: 329-351

[2]

Chuaqui M, Duren P, Osgood B. Schwarzian derivative criteria for valence of analytic and harmonic mappings. Math. Proc. Camb. Philos. Soc., 2007, 143: 473-486

[3]

Chuaqui M, Duren P, Osgood B. Schwarzian derivative and uniform local univalence. Comput. Methods Funct. Theory, 2008, 8: 21-34

[4]

Clunie J, Sheil-Small T. Harmonic univalent functions. Ann. Acad. Sci. Fenn., Ser. AI Math., 1984, 9: 3-25

[5]

Duren P. Univalent Functions, 1983, Heidelberg, New York: Springer-Verlag

[6]

Duren P. Harmonic Mappings in the Plane, 2004, Cambridge: Cambridge University Press

[7]

Hernández R, Martín M. Pre-Schwarzian and Schwarzian derivative of harmonic mappings. J. Geom. Anal., 2015, 25: 64-91

[8]

Kraus W. Über den zusammenhang einiger characteristiken eines einfach zusammenhängenden bereiches mit der kreisabbildung. Mitt. Math. Sem. Giessen, 1932, 21: 1-28

[9]

Nehari Z. The Schwarzian derivative and schlicht functions. Bull. Am. Math. Soc., 1949, 55: 545-551

[10]

Nehari Z. Univalence criteria depending on the Schwarzian derivative. Illinois J. Math., 1979, 23: 345-351

[11]

Osgood B, Stowe D. The Schwarzian derivative and conformal mappings of Riemannian mainfolds. Duke. Math. J., 1992, 67: 57-99

[12]

Pommerenke Ch. Linear-invariante familien analytischer funktionen I. Math. Annalen, 1964, 155: 108-154

[13]

Sheil-Small T. Constants for planar harmonic mappings. J. London Math. Soc., 1990, 42: 237-248

AI Summary AI Mindmap
PDF

147

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/