The Second Stiefel-Whitney Class of Small Covers

Zhangmin Huang

Chinese Annals of Mathematics, Series B ›› 2020, Vol. 41 ›› Issue (2) : 163 -176.

PDF
Chinese Annals of Mathematics, Series B ›› 2020, Vol. 41 ›› Issue (2) : 163 -176. DOI: 10.1007/s11401-020-0192-y
Article

The Second Stiefel-Whitney Class of Small Covers

Author information +
History +
PDF

Abstract

Let π: M nP n be an n-dimensional small cover over P n and λ: ℱ(P n) → ℤ2 n be its characteristic function. The author uses the symbol c(λ) to denote the cardinal number of the image Im(λ). If c(λ) = n + 1 or n + 2, then a necessary and sufficient condition on the existence of spin structure on M n is given. As a byproduct, under some special conditions, the author uses the second Stiefel-Whitney class to detect when P n is n-colorable or (n + 1)-colorable.

Keywords

Small cover / Spin structure / Simple polytope

Cite this article

Download citation ▾
Zhangmin Huang. The Second Stiefel-Whitney Class of Small Covers. Chinese Annals of Mathematics, Series B, 2020, 41(2): 163-176 DOI:10.1007/s11401-020-0192-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ayzenberg A. Relation between the Buchstaber invariant and generalized chromatic numbers. Dalarnevost. Mat. Zh., 2011, 11(2): 113-139

[2]

Borel A, Hirzebruch F. Characterisic classes and homogeneous spaces I. Amer. J. Math., 1958, 80(2): 458-538

[3]

Buchstaber V, Panov T. Torus actions and their applications in topology and combinatorics, 2015, Providence, RI: American Mathematical Society

[4]

Davis M, Januszkiewicz T. Convex polytopes, Coxeter orbifolds and torus actions. Duke. Math. J., 1991, 61: 417-451

[5]

Erokhovets N. Buchstaber invariant of simple polytopes. Russian. Math. Surveys., 2008, 63(5): 962-964

[6]

Joswig M. Projectivities in simplicial complexes and colorings of simple polytopes. Math. Z., 2002, 240(2): 243-259

[7]

Z. 2-torus manifolds, cobordism and small covers. Pacific Journal of Mathematics, 2009, 241(2): 285-308

[8]

Z, Masuda M. Equivariant classification of 2-torus manifolds. Colloq. Math., 2009, 115(2): 171-188

[9]

Z, Tan Q. Small covers and the equivariant bordism classification of 2-torus manifolds. Int. Math. Res. Not., 2014, 24: 6756-6797

[10]

Z, Yu L. Topological types of 3-dimensional small covers. Forum. Math., 2011, 23(2): 245-284

[11]

Miller E, Sturmfels B. Combinatorial Commutative Algebra. Graduate Texts in Math, 2005, Berlin: Springer vol. 227

[12]

Milnor J, Stasheff J. Characteristic Classes, 1974, Princeton: Princeton University Press

[13]

Nakayama H, Nishimura Y. The orientability of small covers and coloring simple polytopes. Osaka. J. Math., 2005, 42(1): 243-256

[14]

Nishimura Y. Combinatorial constructions of three-dimensional small covers. Pacific. J. Math., 2012, 256(1): 177-199

[15]

Notbohm D. Colorings of simplicial complexes and vector bundles over Davis-Januszkiewicz spaces. Math. Z., 2010, 266(2): 399-405

AI Summary AI Mindmap
PDF

103

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/