Geodesics in the Engel Group with a Sub-Lorentzian Metric — the Space-Like Case

Qihui Cai

Chinese Annals of Mathematics, Series B ›› 2020, Vol. 41 ›› Issue (1) : 147 -162.

PDF
Chinese Annals of Mathematics, Series B ›› 2020, Vol. 41 ›› Issue (1) : 147 -162. DOI: 10.1007/s11401-019-0191-z
Article

Geodesics in the Engel Group with a Sub-Lorentzian Metric — the Space-Like Case

Author information +
History +
PDF

Abstract

Let E be the Engel group and D be a bracket generating left invariant distribution with a Lorentzian metric, which is a nondegenerate metric of index 1. In this paper, the author constructs a parametrization of a quasi-pendulum equation by Jacobi functions, and then gets the space-like Hamiltonian geodesics in the Engel group with a sub-Lorentzian metric.

Keywords

Sub-Lorentzian metric / Engel Group / Geodesics

Cite this article

Download citation ▾
Qihui Cai. Geodesics in the Engel Group with a Sub-Lorentzian Metric — the Space-Like Case. Chinese Annals of Mathematics, Series B, 2020, 41(1): 147-162 DOI:10.1007/s11401-019-0191-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Agrachev A A, Chakir E-A, Gauthier J P. Sub-Riemannian metrics on ℝ3. Conference on Geometric Control and Non-holonomic Mechanics, 1998, 25: 29-78

[2]

Ardentov A, Sachkov Yu. Extremal trajectories in a nilponent sub-Riemannian problem on the Engel group. Matematicheskii Sbornik, 2011, 202(11): 31-54

[3]

Beals R, Gaveau B, Greiner P C. Hamilton-Jacobi theory and the Heat Kernal on Heisenberg groups. J. Math. Pures Appl., 2000, 79(7): 633-689

[4]

Beem J K, Ehrlich P E, Easley K L. Global Lorentzian Geometry, 1996, New York: Marcel Dekker

[5]

Cai Q, Huang T, Yang X, Sachkov Yu. Geodesics in the Engel group with a sub-Lorentzian metric. J. Dynam. Control System, 2016, 22(3): 465-483

[6]

Cartan E. Sur quelques quadratures dont l’élément différentiel contient des fonctions arbitraires. Bull. Soc. Math. France, 1901, 29: 118-130

[7]

Chang D C, Markina I, Vasiliev A. Sub-Lorentzian geometry on anti-de Sitter space. J. Math. Pures Appl., 2008, 90(1): 82-110

[8]

Grochowski M. Geodesics in the sub-Lorentzian geometry. Bull. Polish. Acad. Sci., 2002, 50(2): 161-178

[9]

Grochowski M. Reachable sets for the Heisenberg sub-Lorentzian structure on ℝ3, an estimate for the distance function. J. Dynam. Control Sys., 2006, 12(2): 145-160

[10]

Grochowski M. Normal forms and reachable sets for analytic Martinet sub-Lorentzian structures of Hamiltonian type. J. Dynam. Control Sys., 2011, 17(1): 49-75

[11]

Gromov M. Bellaïche A, Risler JJ. Carnot-Carathseodory spaces seen from within. Sub-Riemannian Geometry, 1996, Boston: Birkhauser 79-323

[12]

Huang T, Yang X. Geodesics in the Heisenberg Group H n with a Lorentzian metric. J. Dynam. Control Sys., 2012, 18(1): 21-40

[13]

Korolko A, Markina I. Non-holonomic Lorentzian geometry on some ℍ-type groups. J. Geom. Anal., 2009, 19: 864-889

[14]

Molina M G, Korolko A, Markina I. Sub-semi-Riemannian geometry of general H-type groups. Original Research Article Bulletin des Sciences Mathématiques, 2013, 137(6): 805-833

[15]

Montgomery R. A tour of sub-Riemannian geometries, their geodesics and applications, 2002, Providence, RI: Amer. Math. Soc.

[16]

O’Neill B. Semi-Riemannian Geometry: with Applications to Relativity, 1983, New York: Academic Press

[17]

Piccione P, Tausk D V. Variational aspects of the geodesic problem in sub-Riemannian geometry. J. Geom, Phys., 2001, 39: 183-206

[18]

Strichartz R. Sub-Riemannian geometry. J. Diff. Geom., 1986, 24: 221-263

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/