Certain Curvature Conditions on P-Sasakian Manifolds Admitting a Quater-Symmetric Metric Connection

Uday Chand De , Peibiao Zhao , Krishanu Mandal , Yanling Han

Chinese Annals of Mathematics, Series B ›› 2020, Vol. 41 ›› Issue (1) : 133 -146.

PDF
Chinese Annals of Mathematics, Series B ›› 2020, Vol. 41 ›› Issue (1) : 133 -146. DOI: 10.1007/s11401-019-0190-0
Article

Certain Curvature Conditions on P-Sasakian Manifolds Admitting a Quater-Symmetric Metric Connection

Author information +
History +
PDF

Abstract

The authors consider a quarter-symmetric metric connection in a P-Sasakian manifold and study the second order parallel tensor in a P-Sasakian manifold with respect to the quarter-symmetric metric connection. Then Ricci semisymmetric P-Sasakian manifold with respect to the quarter-symmetric metric connection is considered. Next the authors study ξ-concircularly flat P-Sasakian manifolds and concircularly semisymmetric P-Sasakian manifolds with respect to the quarter-symmetric metric connection. Furthermore, the authors study P-Sasakian manifolds satisfying the condition $\tilde Z(\xi ,Y) \cdot \tilde S = 0$, where $\tilde Z, \tilde S$ are the concircular curvature tensor and Ricci tensor respectively with respect to the quarter-symmetric metric connection. Finally, an example of a 5-dimensional P-Sasakian manifold admitting quarter-symmetric metric connection is constructed.

Keywords

Quarter-symmetric metric connection / P-Sasakian manifold / Ricci semi-symmetric manifold / ξ-Concircularly flat / Concircularly semisymmetric

Cite this article

Download citation ▾
Uday Chand De, Peibiao Zhao, Krishanu Mandal, Yanling Han. Certain Curvature Conditions on P-Sasakian Manifolds Admitting a Quater-Symmetric Metric Connection. Chinese Annals of Mathematics, Series B, 2020, 41(1): 133-146 DOI:10.1007/s11401-019-0190-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adati T, Matsumoto K. On conformally recurrent and conformally symmetric P-Sasakian manifolds. TRU Math., 1977, 13: 25-32

[2]

Adati T, Miyazawa T. Some properties of P-Sasakian manifolds. TRU Math., 1977, 13: 33-42

[3]

Biswas S C, De U C. Quarter-symmetric metric connection in SP-Sasakian manifold. Common. Fac. Sci. Univ. Ank. Al., 1997, 46: 49-56

[4]

Blair D E. Inversion Theory and Conformal Mapping, 2000, Provindence, RI: Amer. Math. Soc.

[5]

Blair D E, Kim J S, Tripathi M M. On the concircular curvature tensor of a contact metric manifold. J. Korean Math. Soc., 2005, 42: 883-892

[6]

De U C, Özgür C, Arslan K On a type of P-Sasakian manifolds. Mathematica Balkanica, 2008, 22: 25-36

[7]

Desmukh S, Ahmed S. Para Sasakian manifolds isometrically immersed in spaces of constant curvature. Kyungpook J. Math., 1980, 20: 112-121

[8]

Golab S. On semi-symmetric and quarter-symmetric linear connections. Tensor (N.S.), 1975, 29: 249-254

[9]

Han Y, Yun H T, Zhao P. Some invariants of quarter-symmetric metric connections under the projective transformation. Filomat, 2013, 27(4): 679-691

[10]

Kuhnel W. Conformal transformations between einstein spaces, 1988, Braunschweig: Vieweg 105-146

[11]

Mandal K, De U C. Quarter-symmetric metric connection in a P-Sasakian manifold. Analele Universitatii de Vest Timisoara, Seria Matematica Informatica, 2015, 53: 137-150

[12]

Matsumoto K, Ianus S, Mihai I. On P-Sasakian manifolds which admit certain tenso fields. Publ. Math. Debrecen, 1986, 33: 61-65

[13]

Mukhopadhyay S, Roy A K, Barua B. Some properties of quarter-symmetric metric connection on a Riemannian manifold. Soochow J. Math., 1991, 17: 205-211

[14]

Ögür C. On a class of Para-Sasakian manifolds. Turkish J. Math., 2005, 29: 249-257

[15]

Rastogi S C. On quarter-symmetric metric connection. C. R. Acad. Sci. Bulgar, 1978, 31: 811-814

[16]

Rastogi S C. On quarter-symmetric metric connection. Tensor (N.S.), 1987, 44: 133-141

[17]

Satō I. On a structure similar to the almost contact structure. Tensor (N.S.), 1976, 30: 219-224

[18]

Satō I, Matsumoto K. On P-Sasakian manifolds satisfying certain conditions. Tensor (N.S.), 1979, 33: 173-178

[19]

Sular S, Özgür C, De U C. Quarter-symmetric metric connection in a Kenmotsu manifold. SUT J. of Math., 2008, 44: 297-306

[20]

Szabó Z I. Structure theorems on Riemannian spaces satisfying R(X,Y).R = 0, I, the local version. J. Differential. Geom., 1982, 17: 531-582

[21]

Tashiro Y. Complete Riemannian manifolds and some vector fields. Trans. Amer. Math. Soc., 1965, 117: 251-275

[22]

Yano K. Concircular geometry I, Concircular transformation. Proc. Imp. Acad. Tokyo, 1940, 16: 195-200

[23]

Yano K. On semi-symmetric metric connection. Rev. Roumaine Math. Pures Appl., 1970, 15: 1579-1586

[24]

Yano K, Imai T. Quarter-symmetric metric connections and their curvature tensors. Tensor (N.S.), 1982, 38: 13-18

[25]

Yano K, Kon M. Structures on Manifolds, 1984, Singapore: World Scientific 40

[26]

Yildiz A, Turan M, Acet B E. On Para-Sasakian Manifolds. DPU Fen Bilimleri Enstitusu Dergis, 2011, 24: 27-34

[27]

Zhen G, Cabrerizo J L, Fernandez L M, Fernandez M. On ξ-conformally flat contact metric manifolds. Indian J. Pure Appl. Math., 1997, 28: 725-734

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/