PDF
Abstract
An initial boundary-value problem for the Hirota equation on the half-line, 0 < x < ∞, t > 0, is analysed by expressing the solution q(x, t) in terms of the solution of a matrix Riemann-Hilbert (RH) problem in the complex k-plane. This RH problem has explicit (x, t) dependence and it involves certain functions of k referred to as the spectral functions. Some of these functions are defined in terms of the initial condition q(x, 0) = q 0(x), while the remaining spectral functions are defined in terms of the boundary values q(0, t) = g 0(t), q x(0, t) = g 1(t) and q xx(0, t) = g 2(t). The spectral functions satisfy an algebraic global relation which characterizes, say, g 2(t) in terms of {q 0(x), g 0(t), g 1(t)}. The spectral functions are not independent, but related by a compatibility condition, the so-called global relation.
Keywords
Hirota equation
/
Riemann-Hilbert problem
/
Initial-boundary value problem
/
Global relation
Cite this article
Download citation ▾
Lin Huang.
The Initial-Boundary-Value Problems for the Hirota Equation on the Half-Line.
Chinese Annals of Mathematics, Series B, 2020, 41(1): 117-132 DOI:10.1007/s11401-019-0189-6
| [1] |
Hirota R. Exact envelope-soliton solutions of a nonlinear wave equation. J. Math. Phys., 1973, 14: 805-809
|
| [2] |
Lakshmanan M, Ganesan S. Equivalent forms of a generalized Hirota’s equation with linear inhomogeneities. J. Phys. Soc. Jpn., 1983, 52: 4031-4034
|
| [3] |
Lamb G L. Elements of Soliton Theory, 1980, New York: Wiley
|
| [4] |
Tao Y, He J. Multisolitons, breathers, and rogue waves for the Hirota equation generated by the Darboux transformation. Phys. Rev. E, 2012, 85: 026601
|
| [5] |
Fokas A S. A unified transform method for solving linear and certain nonlinear PDEs. Proc. Roy. Soc. Lond. A, 1997, 453: 1411-1443
|
| [6] |
Fokas A S. Integrable nonlinear evolution equations on the half-line. Commun. Math. Phys., 2002, 230: 1-39
|
| [7] |
Fokas A S. A unified approach to boundary value problems, 2008, Philadelphia: SIAM
|
| [8] |
Lenells J. Initial-boundary value problems for integrable evolution equations with 3 × 3 Lax pairs. Physica D, 2012, 241: 857-875
|
| [9] |
Lenells J. The KdV equation on the half-line: The Dirichlet to Neumann map. J. Phys. A, 2013, 46: 345203
|
| [10] |
Lenells J. The Degasperis-Procesi equation on the half-line. Nonlinear Analysis, 2013, 76: 122-139
|
| [11] |
Boutet de Monvel A, Fokas A S, Shepelsky D. The mKDV equation on the half-line. J. Inst. Math. Jussieu., 2004, 3: 139-164
|
| [12] |
Boutet de Monvel A, Shepelsky D. The Camassa-Holm equation on the half-line: A Riemann-Hilbert Approach. J. Geom. Anal., 2008, 18: 285-323
|
| [13] |
Xu J, Fan E. The unified transform method for the Sasa-Satsuma equation on the half-line. Proc. R. Soc. A, 2013, 469: 20130068
|
| [14] |
Xu J, Fan E. The three wave equation on the half-line. Physics Letters A, 2014, 378: 26-33
|
| [15] |
Bona J L, Fokas A S. Initial-boundary-value problems for linear and integrable nonlinear dispersive partial differential equations. Nonlinearity, 2008, 21: T195-T203
|
| [16] |
Boutet De Monvel A, Fokas A S, Shepelsky D. Integrable nonlinear evolution equations on a finite interval. Comm.. Math. Phys., 2006, 263: 133-172
|
| [17] |
Dujardin G M. Asymptotics of linear initial boundary value problems with periodic boundary data on the half-line and finite intervals. Proc. R. Soc. Lond. A, 2009, 465: 3341-3360
|
| [18] |
Fokas A S. Integrable nonlinear evolution equations on the half-line. Comm.. Math. Phys., 2002, 230: 1-39
|
| [19] |
Fokas A S. Linearizable initial boundary value problems for the sine-Gordon equation on the half-line. Nonlinearity, 2004, 17: 1521-1534
|
| [20] |
Fokas A S, Its A R. The Nonlinear Schrödinger equation on the interval. J. Phys. A, 2004, 37: 6091-6114
|
| [21] |
Fokas A S, Its A R, Sung L Y. The nonlinear Schrodinger equation on the half-line. Nonlinearity, 2005, 18: 1771-1822
|
| [22] |
Lenells J. The derivative nonlinear Schrodinger equation on the half-line. Physica D, 2008, 237: 3008-3019
|
| [23] |
Fokas A S, Its A R. The linearization of the initial-boundary value problem of the nonlinear Schrödinger equation. SIAM J. Math. Anal., 1996, 27: 738-764
|
| [24] |
Zakharov V E, Shabat A B. A scheme for integrating the nonlinear equations of numerical physics by the method of the inverse scattering problem I. Funct. Anal. Appl., 1974, 8: 226-235
|
| [25] |
Zakharov V E, Shabat A B. A scheme for integrating the nonlinear equations of numerical physics by the method of the inverse scattering problem II. Funct. Anal. Appl., 1979, 13: 166-174
|