Boundedness of Singular Integral Operators on Herz-Morrey Spaces with Variable Exponent

Hongbin Wang , Fanghui Liao

Chinese Annals of Mathematics, Series B ›› 2020, Vol. 41 ›› Issue (1) : 99 -116.

PDF
Chinese Annals of Mathematics, Series B ›› 2020, Vol. 41 ›› Issue (1) : 99 -116. DOI: 10.1007/s11401-019-0188-7
Article

Boundedness of Singular Integral Operators on Herz-Morrey Spaces with Variable Exponent

Author information +
History +
PDF

Abstract

Let Ω ∈ L s(S n−1) (s > 1) be a homogeneous function of degree zero and b be a BMO function or Lipschitz function. In this paper, the authors obtain some boundedness of the Calderón-Zygmund singular integral operator T Ω and its commutator [b, T Ω] on Herz-Morrey spaces with variable exponent.

Keywords

Calderón-Zygmund singular integral / Commutator / Herz-Morrey space / Variable exponent

Cite this article

Download citation ▾
Hongbin Wang,Fanghui Liao. Boundedness of Singular Integral Operators on Herz-Morrey Spaces with Variable Exponent. Chinese Annals of Mathematics, Series B, 2020, 41(1): 99-116 DOI:10.1007/s11401-019-0188-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cruz-Uribe D, Fiorenza A, Martell J M, Pérez C. The boundedness of classical operators on variable L p spaces. Ann. Acad. Sci. Fen. Math., 2006, 31: 239-264

[2]

Cruz-Uribe D, Fiorenza A, Neugebauer C. The maximal function on variable L p spaces. Ann. Acad. Sci. Fenn. Math., 2003, 28: 223-238

[3]

Diening L, Harjulehto P, Hästö P, Růzička M. Lebesgue and Sobolev Spaces with Variable Exponents, 2011, Heidelberg: Springer-Verlag

[4]

Izuki M. Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization. Anal. Math., 2010, 36: 33-50

[5]

Izuki M. Fractional integrals on Herz-Morrey spaces with variable exponent. Hiroshima Math. J., 2010, 40: 343-355

[6]

Izuki M. Boundedness of commutators on Herz spaces with variable exponent. Rend. del Circolo Mate. di Palermo, 2010, 59: 199-213

[7]

Kováčik O, Rákosník J. On spaces L p(x) and W k,p(x). Czechoslovak Math. J., 1991, 41: 592-618

[8]

Lu S, Ding Y, Yan D. Singular Integrals and Related Topics, 2011, Beijing: World Scientific Press

[9]

Lu S, Wu Q, Yang D. Boundedness of commutators on Hardy type spaces. Sci. China Ser. A, 2002, 45: 984-997

[10]

Muckenhoupt B, Wheeden R L. Weighted norm inequalities for singular and fractional integrals. Trans. Amer. Math. Soc., 1971, 161: 249-258

[11]

Nakai E, Sawano Y. Hardy spaces with variable exponents and generalized Campanato spaces. J. Fund. Anal., 2012, 262: 3665-3748

[12]

Tan J, Liu Z. Some boundedness of homogeneous fractional integrals on variable exponent function spaces. Acta Math. Sinica (Chin. Ser.), 2015, 58: 309-320

[13]

Wang H. The continuity of commutators on Herz-type Hardy spaces with variable exponent. Kyoto J. Math., 2016, 56: 559-573

[14]

Wang H. Commutators of Marcinkiewicz integrals on Herz spaces with variable exponent. Czechoslovak Math. J., 2016, 66: 251-269

[15]

Wang H. Commutators of homogeneous fractional integrals on Herz-type Hardy spaces with variable exponent. J. Contemp. Math. Anal., 2017, 52: 134-143

[16]

Wang H. Commutators of singular integral operator on Herz-type Hardy spaces with variable exponent. J. Korean Math. Soc., 2017, 54: 713-732

[17]

Wang H, Fu Z, Liu Z. Higher-order commutators of Marcinkiewicz integrals and fractional integrals on variable Lebesgue spaces. Acta Math. Sci. Ser. A, 2012, 32: 1092-1101

[18]

Wang H, Liu Z. Some characterizations of Herz-type Hardy spaces with variable exponent. Ann. Fund. Anal., 2015, 6: 224-243

AI Summary AI Mindmap
PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/