Balanced and Unbalanced Components of Moist Atmospheric Flows with Phase Changes

Alfredo N. Wetzel , Leslie M. Smith , Samuel N. Stechmann , Jonathan E. Martin

Chinese Annals of Mathematics, Series B ›› 2019, Vol. 40 ›› Issue (6) : 1005 -1038.

PDF
Chinese Annals of Mathematics, Series B ›› 2019, Vol. 40 ›› Issue (6) : 1005 -1038. DOI: 10.1007/s11401-019-0170-4
Article

Balanced and Unbalanced Components of Moist Atmospheric Flows with Phase Changes

Author information +
History +
PDF

Abstract

Atmospheric variables (temperature, velocity, etc.) are often decomposed into balanced and unbalanced components that represent low-frequency and high-frequency waves, respectively. Such decompositions can be defined, for instance, in terms of eigen-modes of a linear operator. Traditionally these decompositions ignore phase changes of water since phase changes create a piecewise-linear operator that differs in different phases (cloudy versus non-cloudy). Here we investigate the following question: How can a balanced-unbalanced decomposition be performed in the presence of phase changes? A method is described here motivated by the case of small Froude and Rossby numbers, in which case the asymptotic limit yields precipitating quasi-geostrophic equations with phase changes. Facilitated by its zero-frequency eigenvalue, the balanced component can be found by potential vorticity (PV) inversion, by solving an elliptic partial differential equation (PDE), which includes Heaviside discontinuities due to phase changes. The method is also compared with two simpler methods: one which neglects phase changes, and one which simply treats the raw pressure data as a streamfunction. Tests are shown for both synthetic, idealized data and data from Weather Research and Forecasting (WRF) model simulations. In comparisons, the phase-change method and no-phase-change method produce substantial differences within cloudy regions, of approximately 5 K in potential temperature, due to the presence of clouds and phase changes in the data. A theoretical justification is also derived in the form of a elliptic PDE for the differences in the two streamfunctions.

Keywords

Potential vorticity inversion / Moist atmospheric dynamics / Slow-fast systems / Balanced-unbalanced decomposition / Elliptic partial differential equations

Cite this article

Download citation ▾
Alfredo N. Wetzel, Leslie M. Smith, Samuel N. Stechmann, Jonathan E. Martin. Balanced and Unbalanced Components of Moist Atmospheric Flows with Phase Changes. Chinese Annals of Mathematics, Series B, 2019, 40(6): 1005-1038 DOI:10.1007/s11401-019-0170-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bannon P R. Onthe anelastic approximation for a compressible atmosphere. J. Atmos. Sci., 1996, 53(23): 3618-3628

[2]

Derber J, Bouttier F. Areformulation of the background error covariance in the ECMWF global data assimilation system. Tellus A, 1999, 51(2): 195-221

[3]

Dutrifoy A, Majda A J. Thedynamics of equatorial long waves: a singular limit with fast variable coefficients. Commun. Math. Sci., 2006, 4(2): 375-397

[4]

Dutrifoy A, Majda A J. Fastwave averaging for the equatorial shallow water equations. Comm.PDEs, 2007, 32(10): 1617-1642

[5]

Dutrifoy A, Majda A J, Schochet S. Asimple justification of the singular limit for equatorial shallow-water dynamics. Coram. Pure Appl. Math., 2009, 62(3): 322-333

[6]

Emanuel K A. AtmosphericConvection, 1994, New York: Oxford University Press

[7]

Embid P F, Majda A J. Averagingover fast gravity waves for geophysical flows with arbitary potential vorticity. Comm. PDEs, 1996, 213-4: 619-658

[8]

Embid P F, Majda A J. LowFroude number limiting dynamics for stably stratified flow with small or finite Rossby numbers. Geophys. Astrophys. Fluid Dynam., 1998, 871-2: 1-50

[9]

Fogelson A L, Keener J P. Immersedinterface methods for Neumann and related problems in two and three dimensions. SIAM J. Sci. Comput., 2001, 22(5): 1630-1654

[10]

Frierson D M W, Majda A J, Pauluis O M. Largescale dynamics of precipitation fronts in the tropical atmosphere: a novel relaxation limit. Commun. Math. Sci., 2004, 2(4): 591-626

[11]

Grabowski W W, Smolarkiewicz P K. Two-time-level semi-Lagrangian modeling of precipitating clouds. Mon. Wea. Rev., 1996, 124(3): 487-497

[12]

Hernandez- Duenas G, Duenas G, Majda A J, Smith L M, Stechmann S N. Minimalmodels for precipitating turbulent convection. J. Fluid Mech., 2013, 717: 576-611

[13]

Hoskins B J, McIntyre M E, Robertson A W. Onthe use and significance of isentropic potential vorticity maps. Q. J. Roy. Met. Soc., 1985, 111(470): 877-946

[14]

Kalnay E. Atmosphericmodeling, data assimilation and predictability, 2003, Cambridge: Cambridge University Press

[15]

Kessler E. Onthe distribution and continuity of water substance in atmospheric circulations, Number 32 in Meteorological Monographs, 1969, Providence: American Meteorological Society

[16]

Khouider B, Majda A J, Stechmann S N. Climatescience in the tropics: waves, vortices and PDEs. Nonlinearity, 2013, 26(1): R1-R68

[17]

Klainerman S, Majda A J. Singularlimits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Comm. Pure Appl. Math., 1981, 34(4): 48-524

[18]

Klainerman S, Majda A J. Compressibleand incompressible fluids. Comm. Pure Appl. Math., 1982, 35(5): 629-651

[19]

Klein R, Majda A J. Systematicmultiscale models for deep convection on mesoscales. Theor. Comp. Fluid Dyn., 2006, 205-6: 525-551

[20]

Kleist D T, Parrish D F, Derber J C, Treadon R, Errico R M, Yang R. Improvingincremental balance in the GSI 3DVAR analysis system. Mon. Wea. Rev., 2009, 137(3): 1046-1060

[21]

Lackmann G. MidlatitudeSynoptic Meteorology: Dynamics, Analysis, and Forecasting, 2011, Providence: American Meteorological Society

[22]

LeVeque R J. FiniteDifference Methods for Ordinary and Partial Differential Equations, Steady State and Time Dependent Problems, 2007, Philadelphia: Society for Industrial and Applied Mathematics (SIAM)

[23]

Leveque R J, Li Z. Theimmersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J. Numer. Anal., 1994, 31(4): 1019-1044

[24]

Li Z. Anote on immersed interface method for three-dimensional elliptic equations. Comput. Math. Appl, 1996, 31(3): 9-17

[25]

Li Z, Ito K. Maximumprinciple preserving schemes for interface problems with discontinuous coefficients. SIAM J. Sci. Comput., 2001, 23(1): 339-361

[26]

Lipps F B, Hemler R S. Ascale analysis of deep moist convection and some related numerical calculations. J. Atmos. Sci., 1982, 39(10): 2192-2210

[27]

Liu X-D, Fedkiw R P, Kang M. Aboundary condition capturing method for Poisson's equation on irregular domains. J. Comput. Phys., 2000, 160(1): 151-178

[28]

Liu X-D, Sideris T. Convergenceof the ghost fluid method for elliptic equations with interfaces. Math. Comput., 2003, 72(244): 1731-1746

[29]

Majda A J. CompressibleFluid Flow and Systems of Conservation Laws in Several Space Variables, volume 53 of Applied Mathematical Sciences, 1984, New York: Springer-Verlag

[30]

Majda A J. Introductionto PDEs and Waves for the Atmosphere and Ocean, Volume 9 of Courant Lecture Notes in Mathematics, 2003, Providence: American Mathematical Society

[31]

Majda A J, Embid P. Averagingover fast gravity waves for geophysical flows with unbalanced initial data. Theor. Comput. Fluid Dyn., 1998, 113-4: 155-169

[32]

Majda A J, Harlim J. FilteringTurbulent Complex Systems, 2012, Cambridge: Cambridge University Press

[33]

Majda A J, Klein R. Systematicmultiscale models for the Tropics. J. Atmos. Sci., 2003, 60(2): 393-408

[34]

Majda A J, Souganidis P E. Existenceand uniqueness of weak solutions for precipitation fronts: A novel hyperbolic free boundary problem in several space variables. Coram. Pure Appl. Math., 2010, 63(10): 1351-1361

[35]

Marshall J, Plumb R A. Atmosphere, Ocean, and Climate Dynamics: An Introductory Text, 2007, Boston, MA: Academic Press

[36]

Martin J E. Mid-latitude Atmospheric Dynamics: A First Course, 2006, Chichester: John Wiley & Sons

[37]

McTaggart-Cowan R, Gyakum J R, Yau M K. Moistcomponent potential vorticity. J. Atmos. Sci., 2003, 60(1): 166-177

[38]

Ogura Y, Phillips N A. Scaleanalysis of deep and shallow convection in the atmosphere. J. Atmos. Sei, 1962, 19(2): 173-179

[39]

Parrish D F, Derber J C. The National Meteorological Center's spectral statistical-interpolation analysis system. Mon. Wea. Rev., 1992, 120(8): 1747-1763

[40]

Rogers, R. R. and Yau, M. K., AShort Course in Cloud Physics, Butterworth Heinemann, Burlington, 1989.

[41]

Schubert W H, Hausman S A, Garcia M, Ooyama K V, Kuo H-O. Potential vorticity in a moist atmosphere. J. Atmos. Sci., 2001, 58(21): 3148-3157

[42]

Skamarock W C, Klemp J B, Dudhia J, Gill D O, Barker D M, Duda M G, Huang X-Y, Wang W, Powers J G. Adescription of the Advanced Research WRF Version 3, NCAR/TN-475+STR, NCAR, 2008

[43]

Smith L M, Stechmann S N. Precipitatingquasigeostrophic equations and potential vorticity inversion with phase changes. J. Atmos. Sci., 2017, 74(10): 3285-3303

[44]

Stechmann S N, Majda A J. Thestructure of precipitation fronts for finite relaxation time. Theor. Comp. Fluid Dyn., 2006, 205-6: 377-404

[45]

Stevens B. Atmosphericmoist convection. Annu. Rev. Earth Planet. Sci., 2005, 33(1): 605-643

[46]

Trefethen L N, III D. NumericalLinear Algebra, 1997, Philadelphia: Society for Industrial and Applied Mathematics (SIAM)

[47]

Tzou C-N, Stechmann S N. Simplesecond-order finite differences for elliptic PDEs with discontinuous coefficients and interfaces. Coram. App. Math, and Comp. Sci., 2019, 14(2): 121-147

[48]

Vallis G K. Atmosphericand Oceanic Fluid Dynamics: Fundamentals and Large-scale Circulation, 2006, New York: Cambridge University Press

[49]

Wetzel A N, Smith L M, Stechmann S N. Moisturetransport due to baroclinic waves: Linear analysis of precipitating quasi-geostrophic dynamics. Math. Glim. Weather Forecast., 2017, 3(1): 28-50

[50]

Zhou Y-S, Zhu K-F, Zhang Z. Anomalyof the moist potential vorticity substance with mass forcing and its application in diagnosing Mei-yu front rainfall. Atmos. Ocean. Sci. Lett., 2015, 8(1): 39-44

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/