Invariant Measures for Nonlinear Conservation Laws Driven by Stochastic Forcing

Gui-Qiang G. Chen , Peter H. C. Pang

Chinese Annals of Mathematics, Series B ›› 2019, Vol. 40 ›› Issue (6) : 967 -1004.

PDF
Chinese Annals of Mathematics, Series B ›› 2019, Vol. 40 ›› Issue (6) : 967 -1004. DOI: 10.1007/s11401-019-0169-x
Article

Invariant Measures for Nonlinear Conservation Laws Driven by Stochastic Forcing

Author information +
History +
PDF

Abstract

Some recent developments in the analysis of long-time behaviors of stochastic solutions of nonlinear conservation laws driven by stochastic forcing are surveyed. The existence and uniqueness of invariant measures are established for anisotropic degenerate parabolic-hyperbolic conservation laws of second-order driven by white noises. Some further developments, problems, and challenges in this direction are also discussed.

Keywords

Stochastic solutions / Entropy solutions / Invariant measures / Existence / Uniqueness / Stochastic forcing / Anisotropic degenerate / Parabolichyperbolic equations / Long-time behavior

Cite this article

Download citation ▾
Gui-Qiang G. Chen, Peter H. C. Pang. Invariant Measures for Nonlinear Conservation Laws Driven by Stochastic Forcing. Chinese Annals of Mathematics, Series B, 2019, 40(6): 967-1004 DOI:10.1007/s11401-019-0169-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Arnold L. Random Dynamical Systems, 1998, Berlin Heidelberg: Springer-Verlag

[2]

Barré J, Bernardin C, Chertrite R. Density large deviations for multidimensional stochastic hyperbolic conservation laws. J. Stat. Phys., 2017, 170(4): 466-491

[3]

Bauzet C, Vallet G, Wittbold P. The Cauchy problem for conservation laws with a multiplicative stochastic perturbation. J. Hyper. Diff. Eq., 2012, 9(4): 661-709

[4]

Bergé B, Saussereau B. On the long-time behavior of a class of parabolic SPDEs: Monotonicity methods and exchange of stability. ESAIM: Probab. Stat., 2005, 9: 254-276

[5]

Birkens J. Sufficient conditions for the eventual strong Feller property for degenerate stochastic evolutions. J. Math. Anal. Appl., 2011, 379(4): 469-481

[6]

Bouchut F, Desvillettes L. Averaging lemmas without time Fourier transform and application to discretized kinetic equations. Proc. Royal Soc. Edin. Sec. A, 1999, 129: 19-36

[7]

Bricmont J, Kupiainen A, Lefevere R. Ergodicity of the 2D Navier-Stokes equations with random forcing. Comm. Math. Phys., 2001, 224(4): 65-81

[8]

Bricmont J, Kupiainen A, Lefevere R. Exponential mixing of the 2D Navier-Stokes dynamics. Comm. Math. Phys., 2002, 224(4): 87-132

[9]

Chen G -Q, Ding Q, Karlsen K. On nonlinear stochastic balance laws. Arch. Ration. Mech. Anal., 2012, 204(4): 707-743

[10]

Chen G -Q, Frid H. Large time behavior of entropy solutions in L8 for multidimensional conservation laws, Advances in Nonlinear PDEs and Related Areas, 28–44. World Sci. Publ., 1998, NJ: River Edge

[11]

Chen G -Q, Lu Y -G. A study of approaches to applying the theory of compensated compactness. Chinese Sci. Bull., 1989, 34: 15-19

[12]

Chen G -Q, Pang P. On nonlinear anisotropic degenerate parabolic-hyperbolic equations with stochastic forcing, 2019

[13]

Chen G -Q, Perthame B. Well-posedness for non-isotropic degenerate parabolic-hyperbolic equations. Ann. l’I.H.P. Anal. Non-Linéaires, 2003, 20(4): 645-668

[14]

Chen G -Q, Perthame B. Large-time behavior of periodic entropy solutions to anisotropic degenerate parabolic-hyperbolic equations. Proc. A.M.S., 2009, 137(4): 3003-3011

[15]

Chueshov I, Vuillermot P. On the large-time dynamics of a class of random parabolic equations. C. R. Acad. Sci. Paris, 1996, 322(4): 1181-1186

[16]

Chueshov I, Vuillermot P. On the large-time dynamics of a class of parabolic equations subjected homogeneous white noise: Stratonovitch’s case. C. R. Acad. Sci. Paris, 1996, 323(4): 29-33

[17]

Chueshov I, Vuillermot P. Long-time behavior of solutions to a class of quasilinear parabolic equations with random coefficients, Ann. I.H.P. Anal. Non-Linéaires, 1998, 15(4): 191-232

[18]

Chueshov I, Vuillermot P. Long-time behavior of solutions to a class of stochastic parabolic equations with homogeneous white noise: Straonovitch’s case. Probab. Theory Related Fields, 1998, 112(4): 149-202

[19]

Chueshov I, Vuillermot P. On the large-time dynamics of a class of parabolic equations subjected to homogeneous white noise: Itô’s case. C. R. Acad. Sci. Paris, 1998, 326(4): 1299-1304

[20]

Chueshov I, Vuillermot P. Long-time behavior of solutions to a class of stochastic parabolic equations with homogeneous white noise: Itô’s case. Stoch. Anal. Appl., 2000, 18(4): 581-615

[21]

Coti-Zelati M, Glatt-Holtz N, Trivisa K. Invariant measures for the stochastic one-dimensional compressible Navier-Stokes equations, 2018

[22]

Crauel H. Markov measures for random dynamical systems. Stochastics and Stochastic Reports, 1991, 37(4): 153-173

[23]

Crauel H. Random Probability Measures on Polish Spaces, 2002, London: Taylor and Francis

[24]

Crauel H, Debussche A, Flandoli F. Random attractors. J. Dynam. Diff. Eq., 1997, 9(4): 307-341

[25]

Crauel H, Flandoli F. Attractors for random dynamical systems. Probab. Theory Relat. Fields, 1994, 100(4): 365-393

[26]

Da Prato G, Debussche A. Two-dimensional Navier-Stokes equations driven by a space-time white noise. J. Funct. Anal., 2002, 196(4): 180-210

[27]

Da Prato G, Debussche A. Ergodicity for the 3D stochastic Navier-Stokes equations. J. Math. Pures Appl., 2003, 82(4): 877-947

[28]

Da Prato G, Debussche A, Temam R. Stochastic Burger’s equation. No.D.E.A., 1994, 1: 389-402

[29]

Da Prato G, Flandoli F, Priola E, Röckner M. Strong uniqueness for stochastic evolution equations in Hilbert spaces perturbed by a bounded measurable drift. Ann. Prob., 2013, 41(4): 3306-3344

[30]

Da Prato G, Zabczyk J. Stochastic Equations in Infinite Dimensions, 2008, Cambridge: Cambridge University Press

[31]

Debussche A. On the finite dimensionality of random attractors. Stoch. Anal. Appl., 1997, 15(4): 473-492

[32]

Debussche A. Hausdorff dimension of a random invariant set. J. Math. Pures Appl., 1998, 77(4): 967-988

[33]

Debussche A, Hofmanov´a M, Vovelle J. Degenerate parabolic stochastic partial differential equations: Quasilinear case. Ann. Probab., 2016, 44(4): 1916-1955

[34]

Debussche A, Vovelle J. Scalar conservation laws with stochastic forcing. J. Funct. Anal., 2010, 259(4): 1014-1042

[35]

Debussche A, Vovelle J. Invariant measure of scalar first-order conservation laws with stochastic forcing, Probab. Theory Relat. Fields, 2015, 163(4): 575-611

[36]

Dembo A, Zeitouni O. Large Deviations Techniques and Applications, 1997 2nd ed. New York: Springer-Verlag

[37]

Delarue F, Flandoli F, Vincenzi D. Noise prevents collapse of Vlasov-Poisson point charges. Comm. Pure Appl. Math., 2014, 67(4): 1700-1736

[38]

Deuschel J -D, Stroock D. Large Deviations, 1989, London: Academic Press

[39]

Doeblin W. Éléments d’une théorie générale des chaînes simples constantes de Markoff. Ann. Sci. École Normale Superieur, 1940, 57: 61-111

[40]

Doeblin W, Fortet R. Sur le chaînes à liaisons complète. Bull. Soc. Math. France, 1937, 65: 132-148

[41]

Dong Z, Wu J -L, Zhang R -R, Zhang T -S. Large deviation principles for first-order scalar conservation laws with stochastic forcing, 2018

[42]

Doob J. Asymptotic property of Markoff transition probability. Trans. Amer. Math. Soc., 1948, 64(4): 393-421

[43]

Dupuis P, Ellis R S. A Weak Convergence Approach to the Theory of Large Deviations, 1997, New York: Wiley

[44]

Weinan E, Mazel A, Sinai Ya. Probability distribution functions for the random forced Burgers equation. Phys. Rev. Lett., 1997, 78(4): 1904-1907

[45]

Weinan E, Khanin K, Mazel A, Sinai Ya. Invariant measures for Burgers equation with stochastic forcing. Ann. Math., 2000, 151(4): 877-960

[46]

Weinan E, Mattingly J, Sinai Ya. Gibbsian dynamics and ergodicity for the stochastically forced Navier-Stokes equation. Comm. Math. Phys., 2001, 224(4): 83-106

[47]

Fedrizzi E, Flandoli F, Priola E, Vovelle J. Regularity of stochastic kinetic equations. Electron. J. Probab., 2017, 22(4): 1-42

[48]

Fehrman B, Gess B. Well-posedness of nonlinear diffusion equations with nonlinear, conservative noise, 2019

[49]

Feng J, Nualart D. Stochastic scalar conservation laws. J. Funct. Anal., 2008, 255(4): 313-373

[50]

Flandoli F. Arnold L, Crauel H, Eckamann J -P. Stochastic flows and Lyapunov exponents for abstract stochastic PDEs of parabolic type, Lyapunov Exponents Proceedings. LNM 1486, 1991 196-205

[51]

Flandoli F. Dissipativity and invariant measures for stochastic Navier-Stokes equations. No.D.E.A., 1994, 1(4): 403-423

[52]

Flandoli F. Regularity Theory and Stochastic Flows for Parabolic SPDEs, 1995, Singapore: Gordon and Breach Science Publishers

[53]

Flandoli F, Gatarek D. Martingale and stationary solutions for stochastic Navier-Stokes equations. Probab. Theory Relat. Fields, 1995, 102(4): 367-391

[54]

Flandoli F, Gubinelli M, Priola E. Well-posedness of the transport equation by stochastic perturbation. Invent. Math., 2010, 180(4): 1-53

[55]

Flandoli F, Maslowski B. Ergodicity of the 2-D Navier-Stokes equations under random perturbations. Comm. Math. Phys., 1995, 172(4): 119-141

[56]

Földes J, Friedlander S, Glatt-Holtz N, Richards G. Asymptotic analysis for randomly forced MHD, 2016

[57]

Földes J, Glatt-Holtz N, Richards G, Whitehead J P. Ergodicity in randomly forced Rayleigh-Bénard convection, 2015

[58]

Freidlin M I, Wentzell A D. Random Perturbation of Dynamical Systems, 1998 2nd ed. New York: Springer-Verlag

[59]

Gess B, Souganidis P. Long-time behavior, invariant measures and regularizing effects for stochastic scalar conservation laws, 2014

[60]

Gess B, Souganidis P. Stochastic non-isotropic degenerate parabolic-hyperbolic equations, 2016

[61]

Giga Y, Miyakawa T. A kinetic construction of global solutions of first order quasilinear equations. Duke Math. J., 1989, 50(4): 505-515

[62]

Gyöngy I, Nualart D. On the stochastic Burgers equation in the real line. Ann. Probab., 1999, 27(4): 782-802

[63]

Hairer M, Mattingly J. Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing. Ann. Math., 2006, 164: 993-1032

[64]

Hairer M, Mattingly J. Spectral gaps in Wasserstein distances and the 2D stochastic Navier-Stokes equations. Ann. Probab., 2008, 36(4): 2050-2091

[65]

Hairer M, Mattingly J. A theory of hypoellipticity and unique ergodicity for semilinear stochastic PDEs. Electr. J. Probab., 2011, 16(4): 658-738

[66]

Hairer M, Voss J. Approximations to the stochastic Burgers equation. J. Nonlin. Sci., 2011, 21(4): 897-920

[67]

Hofmanov´a M. Degenerate parabolic stochastic partial differential equations. Stochastic Process. Appl., 2013, 123(4): 4294-4336

[68]

Hollander den F. Large Deviations. Fields Institute Monographs, 2000, Providence, RI: A. M.S.

[69]

Karlsen K H, Storrøsten E. On stochastic conservation laws and Malliavin calculus, 2015

[70]

Khas’minskii R. Ergodic properties of recurrent diffusion processes and stabilization of the solutions to the Cauchy problem for parabolic equations. Theory Probab. Appl., 1960, 5(4): 179-196

[71]

Krylov N, Röckner M. Strong solutions of stochastic equations with singular time dependent drift. Probab. Theory Relat. Fields, 2005, 131(4): 154-196

[72]

Kuksin S, Shirikyan A. Mathematics of Two-Dimensional Turbulence, 2002, Cambridge: Cambridge University Press

[73]

Kuksin S, Shirikyan A. Randomly Forced Nonlinear PDEs and Statistical Hydrodynamics in 2 Space Dimensions, 2006, Zürich: European Mathematical Society

[74]

Le Jan Y. Équilibre statistique pour les produits de difféomorphismes aléatoires indépendants. Ann. l’I.H.P. Probab. Stat., 1987, 23(4): 111-120

[75]

Ledrappier F. Positivity of the exponent for stationary sequences of matrices, Lyapunov Exponents Proceedings. LNM, 1986, 1186: 56-73

[76]

Le`on J, Nualart D, Pettersson R. The stochastic burgers equation: Finite moments and smoothness of the density. Infinite Dimensional Analysis, 2000, 3: 363-385

[77]

Lindvall T. Lectures on the Coupling Method, 1992, New York: John Wiley & Sons

[78]

Lions P -L, Perthame B, Souganidis P. Scalar conservation laws with rough (stochastic) fluxes. Stochastic PDEs: Anal. Comput., 2013, 1: 664-686

[79]

Lions P -L, Perthame B, Souganidis P. Scalar conservation laws with rough (stochastic) fluxes, the spatially dependent case. Stochastic PDEs: Anal. Comput., 2014, 2(4): 517-538

[80]

Lions P -L, Perthame B, Tadmor E. A kinetic formulation of multidimensional scalar conservation laws and related equations. J. Amer. Math. Soc., 1994, 7(4): 169-191

[81]

Lions P -L, Perthame B, Tadmor E. Kinetic formulation of the isentropic gas dynamics and p-systems. Comm. Math. Phys., 1994, 163: 415-431

[82]

Majda A. Introduction to Turbulent Dynamical Systems in Complex Systems, 2016, Cham: Springer-Varlag

[83]

Majda A, Tong X -T. Ergodicity of truncated stochastic Navier Stokes with deterministic forcing and dispersion. J. Nonlin. Sci., 2016, 26(4): 1483-1506

[84]

Majda A, Wang X -M. Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows, 2006, Cambridge: Cambridge University Press

[85]

Mariani M. Large deviations principles for stochastic scalar conservation laws. Probab. Theory Relat. Fields, 2010, 147: 607-648

[86]

Maslowski B, Seidler J. Invariant measures for nonlinear SPDE’s: Uniqueness and stability. Archivum Mathematicum, 1998, 34(4): 153-172

[87]

Masmoudi N, Young L -S. Ergodic theory of infinite dimensional systems with applications to dissipative parabolic PDEs. Comm. Math. Phys., 2002, 227(4): 461-481

[88]

Mattingly J C. Exponential convergence for the stochastically forced Navier-Stokes equations and other partially dissipative dynamics. Comm. Math. Phys., 2002, 230(4): 421-462

[89]

Mattingly, J. C., Recent progress for the stochastic Navier-Stokes equations, Journeé EDP., 11, 2003, 52 pages, DOI: 10.5802/jedp.625.

[90]

Perthame B. Kinetic Formulation of Conservation Laws, 2002, Oxford: Oxford University Press

[91]

Peszat S, Zabczyk J. Strong Feller property and irreducibility for diffusions on Hilbert spaces. Ann. Probab., 1995, 23(4): 157-172

[92]

Peszat S, Zabczyk J. Stochastic Partial Differential Equations with Lévy Noise: An Evolution Equation Approach, 2007, Cambridge: Cambridge University Press

[93]

Röckner M, Zhang X -C. Stochastic tamed 3D Navier-Stokes equations: existence, uniqueness and ergodicity. Prob. Theory Relat. Fields, 2009, 145: 211-267

[94]

Romito M, Xu L -H. Ergodicity of the 3D stochastic Navier-Stokes equations driven by mildly degenerate noise. Stoc. Proc. Appl., 2011, 121: 673-700

[95]

Schmalfuss B. The random attractor of the stochastic Lorenz system. ZAMP, 1997, 48(4): 951-975

[96]

Sinai Y. Two results concerning asymptotic behavior of solutions of the Burgers equation with force. J. Stat. Phys., 1991, 64(4): 1-12

[97]

Tadmor E, Tao T. Velocity averaging, kinetic formulations and regularizing effects in quasi-linear pdes. Comm. Pure Appl. Math., 2007, 60(4): 1488-1521

[98]

Temam R. Infinite Dimensional Dynamical Systems in Mechanics and Physics, 1997, New York: Springer-Verlag

[99]

Varadhan S R S. Large Deviations, Courant Lecture Notes, A. M.S., 2016, RI: Providence

[100]

Math. USSR Sbornik, 1981, 39 4

[101]

Villani, C., Optimal Transport, Grundlehren der Mathematischen Wissenschaften, 338, Springer-Verlag, 2009.

[102]

Zhu R, Zhu X. Three-dimensional Navier-Stokes equations driven by space-time white noise. J. Diff. Eq., 2015, 259(4): 4443-4508

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/