Piston Problems of Two-Dimensional Chaplygin Gas

Shuxing Chen , Aifang Qu

Chinese Annals of Mathematics, Series B ›› 2019, Vol. 40 ›› Issue (6) : 843 -868.

PDF
Chinese Annals of Mathematics, Series B ›› 2019, Vol. 40 ›› Issue (6) : 843 -868. DOI: 10.1007/s11401-019-0164-2
Article

Piston Problems of Two-Dimensional Chaplygin Gas

Author information +
History +
PDF

Abstract

In this paper, the authors study the piston problem for the unsteady two-dimensional Euler system for a Chaplygin gas. The angle of the piston is allowed to vary in a wide range. The piston can be pushed forward into the static gas, or pulled back from the gas. The global existence of solution to the piston problem with any initial speed is established, and the structures of the global solutions are clearly described. The authors find that for the proceeding piston problem the front shock can be detached, attached or even adhere to the surface of the piston depending on the parameters of the flow and the piston; while for the receding problem the front rarefaction wave is always detached and the concentration will never occur.

Keywords

Multi-Dimensional piston problem / Proceeding / Receding / Mach number

Cite this article

Download citation ▾
Shuxing Chen, Aifang Qu. Piston Problems of Two-Dimensional Chaplygin Gas. Chinese Annals of Mathematics, Series B, 2019, 40(6): 843-868 DOI:10.1007/s11401-019-0164-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ben-Dor G. Shock Wave Reflection Phenomena, 1991, New York: Springer-Verlag

[2]

Bento M, Bertolami O, Sen A. Generalized Chaplygin gas, accelerated expansion, and dark-energy-matter unification. Physical Review D, 2002, 66: 043507

[3]

Brenier Y. Solutions with concentration to the Riemann problem for the one-dimensional Chaplygin gas equations. Journal of Mathematical Fluid Mechanics, 2005, 7: 326-331

[4]

Chen G. Multidimensional Conservation Laws: Overview, 2011, Boston, MA: Problems, and Perspective, Springer US 23-72

[5]

Chen G, Feldman M. Global solutions of shock reflection by large-angle wedges for potential flow. Ann of Math, 2010, 171: 1067-1182

[6]

Chen S. Existence of local solution to supersonic flow around a three dimensional wing. Advances in Appl. Math., 1992, 13: 273-304

[7]

Chen S. Existence of stationary supersonic flow past a pointed body. Archive Rat. Mech. Anal., 2001, 156: 141-181

[8]

Chen S. A singular multi-dimensional piston problem in compressible flow. Journal of Differential Equa-tions, 2003, 189: 292-317

[9]

Chen S, Qu A. Two-dimensional Riemann problems for Chaplygin gas. SIAM Journal on Mathe-matical Analysis, 2012, 44: 2146-2178

[10]

Chen S, Qu A. Riemann boundary value problems and reflection of shock for the Chaplygin gas. Science in China A: Mathematics, 2012, 55: 671-685

[11]

Chen S, Wang Z, Zhang Y. Global existence of shock front solution to axially symmetric piston problem in compressible flow. Z. Angew. Math. Phys., 2008, 59: 434

[12]

Courant, R. and Friedrichs, K. O., Supersonic Flow and Shock Waves, Applied Mathematical Sciences, 21, Springer-Verlag, New York, 1976.

[13]

Dafermos, C. M., Hyperbolic Conservation Laws in Continuum Physics, 325, 3rd ed., Springer-Verlag, Berlin, Heidelberg, 2010.

[14]

Ding M, Kuang J, Zhang Y. Global stability of rarefaction wave to the 1-D piston problem for the compressible full Euler equations. J. Math. Anal. Appl., 2016

[15]

Ding, M. and Li, Y., An Overview of Piston Problems in Fluid Dynamics, Hyperbolic Conservation Laws and Related Analysis with Applications, Springer Proceedings in Mathematics & Statistics, 49, Springer-Verlag, Berlin, Heidelberg, 2014.

[16]

Elling V, Liu T-P. Supersonic flow onto a solid wedge. Communications on Pure and Applied Mathematics, 2008, 61: 1347-1448

[17]

Fang B, Xiang W. The uniqueness of transonic shocks in supersonic flow past a 2-D wedge. J. Math. Anal. Appl., 2016, 437: 194-213

[18]

Gilbarg, D. and Trudinger, N. S., Elliptic Partial Differential Equations of Second Order, Reprint of the 1998 Edition, Grundlehren Der Mathematischen Wissenschaften, 224, Springer-Verlag, New York, 2003.

[19]

Grisvard, P., Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics, 24, Pitman (Advanced Publishing Program), Boston, MA, 1985.

[20]

Guo L, Sheng W, Zhang T. The two-dimensional Riemann problem for isentropic Chaplygin gas dynamic system. Commun. Pure Appl. Anal., 2010, 9: 431-458

[21]

Liu L X G, Yuan H. Stability of spherically symmetric subsonic flows and transonic shocks under multidimensional perturbations. Adv. Math., 2016, 291: 696-757

[22]

Serre D. Multidimensional shock interaction for a Chaplygin gas. Arch. Ration. Mech. Anal., 2009, 191: 539-577

[23]

Smoller J. Shock Waves and Reaction-Diffusion Equations, 1994, New York: Springer-Verlag

[24]

Xin Z, Yin H. Global multidimensional shock wave for the steady supersonic flow past a three-dimensional curved cone. Anal. Appl., 2006, 4: 101-132

[25]

Zhang Y. Steady supersonic flow past an almost straight wedge with large vertex angle. Journal of Differential Equations, 2003, 192: 1-46

AI Summary AI Mindmap
PDF

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/