A Study of Hyperbolicity of Kinetic Stochastic Galerkin System for the Isentropic Euler Equations with Uncertainty

Shi Jin , Ruiwen Shu

Chinese Annals of Mathematics, Series B ›› 2019, Vol. 40 ›› Issue (5) : 765 -780.

PDF
Chinese Annals of Mathematics, Series B ›› 2019, Vol. 40 ›› Issue (5) : 765 -780. DOI: 10.1007/s11401-019-0159-z
Article

A Study of Hyperbolicity of Kinetic Stochastic Galerkin System for the Isentropic Euler Equations with Uncertainty

Author information +
History +
PDF

Abstract

The authors study the fluid dynamic behavior of the stochastic Galerkin (SG for short) approximation to the kinetic Fokker-Planck equation with random uncertainty. While the SG system at the kinetic level is hyperbolic, its fluid dynamic limit, as the Knudsen number goes to zero and the underlying kinetic equation approaches to the uncertain isentropic Euler equations, is not necessarily hyperbolic, as will be shown in the case study fashion for various orders of the SG approximations.

Keywords

Hyperbolic equations / Uncertainty quantification / Stochastic Galerkin methods

Cite this article

Download citation ▾
Shi Jin, Ruiwen Shu. A Study of Hyperbolicity of Kinetic Stochastic Galerkin System for the Isentropic Euler Equations with Uncertainty. Chinese Annals of Mathematics, Series B, 2019, 40(5): 765-780 DOI:10.1007/s11401-019-0159-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Babuska I, Nobile F, Tempone R. A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal., 2007, 45(3): 1005-1034

[2]

Babuska I, Tempone R, Zouraris G E. Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J. Numer. Anal., 2004, 42(2): 800-825

[3]

Back J, Nobile F, Tamellini L, Tempone R. Rønquist E M, Hesthaven J S. Stochastic Spectral Galerkin and Collocation Methods for PDEs with Random Coefficients: A Numerical Comparison. Spectral and High Order Methods for Partial Differential Equations, 2011, Berlin, Heidelberg: Springer-Verlag

[4]

Bardos C, Golse F, Levermore C D. Fluid dynamics limits of kinetic equations, I. formal derivations. J. Stat. Phys., 1991, 63(1–2): 323-344

[5]

Despres B, Poette G, Lucor D. Robust uncertainty propagation in systems of conservation laws with the entropy closure method, Uncertainty Quantification in Computational Fluid Dynamics. Lect. Notes Comput. Sci. Eng., 2013, Heidelberg: Springer-Verlag

[6]

Gershgorin S. Uber die abgrenzung der eigenwerte einer matrix. Izv. Akad. Nauk. USSR Otd. Fiz.-Mat. Nauk, 1931, 6: 749-754

[7]

Gerster, S., Herty, M. M. and Sikstel, A., Hyperbolic stochastic Galerkin formulation for the p-system, to preprint.

[8]

Ghanem R G, Spanos P D. Stochastic Finite Elements: A Spectral Approach, 1991, New York: Springer-Verlag

[9]

Gunzburger M D, Webster C G, Zhang G. Stochastic finite element methods for partial differential equations with random input data. Acta Numer., 2014, 23: 521-650

[10]

Hu J, Jin S. A stochastic Galerkin method for the Boltzmann equation with uncertainty. J. Comput. Phys., 2016, 315: 150-168

[11]

Hu J, Jin S, Xiu D. A stochastic Galerkin method for Hamilton-Jacobi equations with uncertainty. SIAM J. Sci. Comput., 2015, 37: A2246-A2269

[12]

Research in Math. Sci., 2017, 4 15

[13]

Jin S, Liu L. An asymptotic-preserving stochastic Galerkin method for the semiconductor Boltzmann equation with random inputs and diffusive scalings. Multiscale Model. Simul., 2017, 15: 157-183

[14]

Jin S, Shu R. A stochastic asymptotic-preserving scheme for a kinetic-fluid model for disperse two-phase flows with uncertainty. J. Comput. Phys., 2017, 335: 905-924

[15]

Jin S, Xiu D, Zhu X. Asymptotic-preserving methods for hyperbolic and transport equations with random inputs and diffusive scalings. J. Comput. Phys., 2015, 289: 35-52

[16]

Jin S, Zhu Y. Hypocoercivity and uniform regularity for the Vlasov-Poisson-Fokker-Planck system with uncertainty and multiple scales. SIAM J. Math. Anal., 2018, 50(2): 1790-1816

[17]

Le Maître O P, Knio O M. Spectral Methods for Uncertainty Quantification, Scientific Computation, with Applications to Computational Fluid Dynamics, 2010, New York: Springer-Verlag

[18]

Li Q, Wang L. Uniform regularity for linear kinetic equations with random input based on hypo-coercivity. SIAM J. Uncertainty Quantification, 2017, 5(1): 1193-1219

[19]

Liu L, Jin S. Hypocoercivity based sensitivity analysis and spectral convergence of the stochastic Galerkin approximation to collisional kinetic equations with multiple scales and random inputs. Multiscale Model. Simul., 2018, 16(3): 1085-1114

[20]

Niederreiter H, Hellekalek P, Larcher G, Zinterhof P. Monte Carlo and Quasi-Monte Carlo Methods 1996: Proceedings of a Conference at the University of Salzburg, Lecture Notes in Statistics, 127, 2012, New York: Springer-Verlag

[21]

Nobile F, Tempone R, Webster C G. A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal., 2008, 46(5): 2309-2345

[22]

Perthame B. Second-order Boltzmann schemes for compressible Euler equations in one and two space dimensions. SIAM J. Numer. Anal., 1992, 29(1): 1-19

[23]

Pettersson P, Iaccarino G, Nordstr¨om J. A stochastic Galerkin method for the Euler equations with Roe variable transformation. J. Comput. Phys., 2014, 257: 481-500

[24]

Poette G, Despres B, Lucor D. Uncertainty quantification for systems of conservation laws. J. Comput. Phys., 2009, 228: 2443-2467

[25]

Shu R, Jin S. Uniform regularity in the random space and spectral accuracy of the stochastic Galerkin method for a kinetic-fluid two-phase flow model with random initial inputs in the light particle regime, ESAIM Math. Model. Num. Anal., 2018, 52(5): 1651-1678

[26]

Tryoen J, Le Maître O P, Ndjinga M, Ern A. Roe solver with entropy corrector for uncertain hyperbolic systems. J. Comput. Appl. Math., 2010, 235(2): 491-506

[27]

Villani C. Friedlander S, Serre D. A review of mathematical topics in collisional kinetic theory. Handbook of Mathematical Fluid Mechanics, 2002, Amsterdan: North-Holland

[28]

Xiu D. Fast numerical methods for stochastic computations: A review. Comm. Comput. Phys., 2009, 5(2–4): 242-272

[29]

Xiu D. Numerical Methods for Stochastic Computation, 2010, New Jersey: Princeton University Press, Princeton

[30]

Xiu D, Hesthaven J S. High-order collocation methods for differential equations with random inputs. SIAM J. Sci. Comput., 2005, 27(3): 1118-1139

[31]

Xiu D, Karniadakis G E. The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput., 2002, 24(2): 619-644

[32]

Zhu Y, Jin S. The Vlasov-Poisson-Fokker-Planck system with uncertainty and a one-dimensional asymptotic-preserving method. Multiscale Model. Simul., 2017, 15: 1502-1529

AI Summary AI Mindmap
PDF

139

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/