Multi-Model Communication and Data Assimilation for Mitigating Model Error and Improving Forecasts

Yian Chen , Samuel N. Stechmann

Chinese Annals of Mathematics, Series B ›› 2019, Vol. 40 ›› Issue (5) : 689 -720.

PDF
Chinese Annals of Mathematics, Series B ›› 2019, Vol. 40 ›› Issue (5) : 689 -720. DOI: 10.1007/s11401-019-0157-1
Article

Multi-Model Communication and Data Assimilation for Mitigating Model Error and Improving Forecasts

Author information +
History +
PDF

Abstract

Models for weather and climate prediction are complex, and each model typically has at least a small number of phenomena that are poorly represented, such as perhaps the Madden-Julian Oscillation (MJO for short) or El Niño-Southern Oscillation (ENSO for short) or sea ice. Furthermore, it is often a very challenging task to modify and improve a complex model without creating new deficiencies. On the other hand, it is sometimes possible to design a low-dimensional model for a particular phenomenon, such as the MJO or ENSO, with significant skill, although the model may not represent the dynamics of the full weather-climate system. Here a strategy is proposed to mitigate these model errors by taking advantage of each model’s strengths. The strategy involves inter-model data assimilation, during a forecast simulation, whereby models can exchange information in order to obtain more faithful representations of the full weather-climate system. As an initial investigation, the method is examined here using a simplified scenario of linear models, involving a system of stochastic partial differential equations (SPDEs for short) as an imperfect tropical climate model and stochastic differential equations (SDEs for short) as a low-dimensional model for the MJO. It is shown that the MJO prediction skill of the imperfect climate model can be enhanced to equal the predictive skill of the low-dimensional model. Such an approach could provide a route to improving global model forecasts in a minimally invasive way, with modifications to the prediction system but without modifying the complex global physical model itself.

Keywords

MJO / Multi-Model communication / Data assimilation / Kalman filter algorithm

Cite this article

Download citation ▾
Yian Chen, Samuel N. Stechmann. Multi-Model Communication and Data Assimilation for Mitigating Model Error and Improving Forecasts. Chinese Annals of Mathematics, Series B, 2019, 40(5): 689-720 DOI:10.1007/s11401-019-0157-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Benedict J J, Maloney E D, Sobel A H Tropical intraseasonal variability in version 3 of the gfdl atmosphere model. J. Climate, 2013, 26(2): 426-449

[2]

Biello J A, Majda A J. A new multiscale model for the Madden-Julian oscillation. J. Atmos. Sei., 2005, 62: 1694-1721

[3]

Branicki M, Majda A J. An information-theoretic framework for improving imperfect dynamical predictions via multi-model ensemble forecasts. J. Nonlin. Sci., 2015, 25(3): 489-538

[4]

Brenowitz N D, Prenkel Y, Majda A J. Non-local convergence coupling in a simple stochastic convection model. Dynamics of Atmospheres and Oceans, 2016, 74: 30-49

[5]

Brunet G, Shapiro M, Hoskins B Collaboration of the weather and climate communities to advance subseasonal-to-seasonal prediction. Bull. Amer. Meteor. Soc, 2010, 91(10): 1397-1406

[6]

Castronovo E, Harlim J, Majda A J. Mathematical test criteria for ltering complex systems: Plentiful observations. J. Comput. Phys., 2008, 227(7): 3678-3714

[7]

Chen D, Yuan X. A Markov model for seasonal forecast of Antarctic sea ice. J. Climate, 2004, 17(16): 3156-3168

[8]

Chen N, Majda A J. Predicting the cloud patterns for the Boreal summer intraseasonal oscillation through a low-order stochastic model. Math. Glim. Weather Forecast, 2015, 1: 1-20

[9]

Chen N, Majda A J. Filtering the stochastic skeleton model for the Madden-Julian oscillation. Mon. Wea. Rev., 2016, 144(2): 501-527

[10]

Chen N, Majda A J, Giannakis D. Predicting the cloud patterns of the Madden-Julian Oscillation through a low-order nonlinear stochastic model. Geophys. Res. Lett., 2014, 41(15): 5612-5619

[11]

Chen S, Majda A J, Stechmann S N. Multiscale asymptotics for the skeleton of the Madden-Julian oscillation and tropical-extratropical interactions. Math. Glim. Weather Forecast, 2015, 1: 43-69

[12]

Chen S, Majda A J, Stechmann S N. Tropical-extratropical interactions with the MJO skeleton and climatological mean flow. J. Atmos. Sci., 2016, 73(10): 4101-4116

[13]

Chen S, Stechmann S N. Nonlinear traveling waves for the skeleton of the Madden-Julian oscillation. Comm. Math. Sci., 2016, 14: 571-592

[14]

Deng Q, Khouider B, Majda A J. The MJO in a coarse-resolution GCM with a stochastic multi-cloud parameterization. J. Atmos. Sei., 2015, 72: 55-74

[15]

Deng Q, Khouider B, Majda A J, Ajayamohan R S. Effect of stratiform heating on the plane-taryscale organization of tropical convection. J. Atmos. Sci., 2016, 73(1): 371-392

[16]

Duane G S, Tribbia J J, Weiss J B. Synchronicity in predictive modelling: A new view of data assimilation. Nonlinear Processes in Geophysics, 2006, 13(6): 601-612

[17]

Fraley C, Raftery A E, Gneiting T. Calibrating multimodel forecast ensembles with exchangeable and missing members using bayesian model averaging. Mon. Wea. Rev., 2010, 138(1): 190-202

[18]

Frierson D M W, Majda A J, Pauluis O M. Large scale dynamics of precipitation fronts in the tropical atmosphere: A novel relaxation limit. Commun. Math. Sei., 2004, 2(4): 591-626

[19]

Gershgorin B, Harlim J, Majda A J. Test models for improving filtering with model errors through stochastic parameter estimation. J. Comput. Phys., 2010, 229(1): 1-31

[20]

Gershgorin B, Harlim J, Majda A J. Improving filtering and prediction of spatially extended turbulent systems with model errors through stochastic parameter estimation. J. Comput. Phys., 2010, 229(1): 32-57

[21]

Goddard L, Mason S J, Zebiak S E Current approaches to seasonal to interannual climate predictions. International Journal of Climatology, 2001, 21(9): 1111-1152

[22]

Goswami B B, Khouider B, Phani R Implementation and calibration of a stochastic multicloud convective parameterization in the NCEP Climate Forecast System (CFSv2). J. Adv. Model. Earth Syst., 2017, 9: 1721-1739

[23]

Goswami B B, Khouider B, Phani R Improving synoptic and intraseasonal variability in CFSv2 via stochastic representation of organized convection. Geophys. Res. Lett., 2017, 44(2): 1104-1113

[24]

Goswami B B, Khouider B, Phani R Improved tropical modes of variability in the NCEP Climate Forecast System (Version 2) via a stochastic multicloud model. J. Atmos. Sei., 2017, 74(10): 3339-3366

[25]

Gottschalck J, Wheeler M, Weickmann K A framework for assessing operational Madden-Julian Oscillation forecasts: A CLIVAR MJO Working Group project. Bull. Amer. Meteor. Soc., 2010, 91(9): 1247-1258

[26]

Grabowski W W, Smolarkiewicz P K. CROP: A Cloud Resolving Convection Parameterization for modeling the tropical convecting atmosphere. Physica D: Nonlinear Phenomena, 1999, 133: 171-178

[27]

Guilyardi E, Wittenberg A, Fedorov A Understanding El Nino in ocean-atmosphere general circulation models: Progress and challenges. Bull. Amer. Meteor. Soc., 2009, 90(3): 325-340

[28]

Hagedorn R, Doblas-Reyes F J, Palmer T N. The rationale behind the success of multi-model ensembles in seasonal forecasting-i. basic concept. Tellus A, 2005, 57(3): 219-233

[29]

Harlim J, Majda A J. Filtering nonlinear dynamical systems with linear stochastic models. Non-linearity, 2008, 21(6): 1281-1306

[30]

Harlim J, Majda A J. Catastrophic filter divergence in filtering nonlinear dissipative systems. Comm. Math. Sei., 2010, 8(1): 27-43

[31]

Harlim J, Majda A J. Filtering turbulent sparsely observed geophysical flows. Mon. Wea. Rev., 2010, 138(4): 1050-1083

[32]

Harlim J, Majda A J. Test models for filtering and prediction of moisture-coupled tropical waves. Q. J. Royal Meteorol. Soc., 2013, 139(670): 119-136

[33]

Hottovy S, Stechmann S N. A spatiotemporal stochastic model for tropical precipitation and water vapor dynamics. J. Atmos. Sci., 2015, 72: 4721-4738

[34]

Hung M-P, Lin J-L, Wang W MJO and convectively coupled equatorial waves simulated by CMIP5 climate models. J. Climate, 2013, 26(17): 6185-6214

[35]

Hwang Y-T, Frierson D M W. Link between the double-intertropical convergence zone problem and cloud biases over the southern ocean. Proc. Natl. Acad. Sci. USA, 2013, 110(13): 4935-4940

[36]

Jiang X N, Waliser D E, Xavier P K Vertical structure and physical processes of the Madden-Julian oscillation: Exploring key model physics in climate simulations. J. Geophys. Res.: Atmos., 2015, 120(10): 4718-4748

[37]

Jin E K, Kinter J L, Wang B Current status of ENSO prediction skill in coupled ocean-atmosphere models. Glim. Dyn., 2008, 31(6): 647-664

[38]

Jones C, Carvalho L M V, Wayne Higgins R A statistical forecast model of tropical intraseasonal convective anomalies. J. Climate, 2004, 17(11): 2078-2095

[39]

Jones C, Waliser D E, Lau K M, Stern W. The Madden-Julian oscillation and its impact on northern hemisphere weather predictability. Mon. Wea. Rev., 2004, 132(6): 1462-1471

[40]

Kalnay E, Kanamitsu M, Kistler R The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 1996, 77(3): 437-471

[41]

Khairoutdinov M F, Randall D A. A cloud resolving model as a cloud parameterization in the NCAR community climate system Model: Preliminary results. Geophys. Res. Lett., 2001, 28(18): 3617-3620

[42]

Kharin V V, Zwiers F W. Climate predictions with multimodel ensembles. J. Climate, 2002, 15(7): 793-799

[43]

Khouider B, Majda A J. Multicloud convective parameterizations with crude vertical structure. Theor. Comp. Fluid Dyn., 2006, 20: 351-375

[44]

Khouider B, Majda A J. A simple multicloud parameterization for convectively coupled tropical waves, Part I: Linear analysis. J. Atmos. Sei., 2006, 63: 1308-1323

[45]

Khouider B, Majda A J. A simple multicloud parameterization for convectively coupled tropical waves, Part II: Nonlinear simulations. J. Atmos. Sei., 2007, 64: 381-400

[46]

Khouider B, St-Cyr A, Majda A J, Tribbia J. The MJO and convectively coupled waves in a coarse-resolution GCM with a simple multicloud parameterization. J. Atmos. Sci., 2011, 68: 240-264

[47]

Kiladis G N, Straub K H, Haertel P T. Zonal and vertical structure of the Madden-Julian oscillation. J. Atmos. Sci., 2005, 62: 2790-2809

[48]

Kim D, Sobel A H, Maloney E D A systematic relationship between intraseasonal variability and mean state bias in agcm simulations. J. Climate, 2011, 24(21): 5506-5520

[49]

Kim H-M, Webster P J, Toma V E, Kim D. Predictability and prediction skill of the MJO in two operational forecasting systems. J. Climate, 2014, 27(14): 5364-5378

[50]

Kirtman B, Pirani A. The state of the art of seasonal prediction: Outcomes and recommendations from the first world climate research program workshop on seasonal prediction. Bull. Amer. Meteor. Soc, 2009, 90(4): 455-458

[51]

Kirtman B P, Min D, Infanti J M The north american multimodel ensemble: Phase-1 seasonal-to-interannual prediction; phase-2 toward developing intraseasonal prediction. Bull. Amer. Meteor. Soc., 2014, 95(4): 585-601

[52]

Krishnamurti T N, Kishtawal C M, LaRow T E Improved weather and seasonal climate forecasts from multimodel superensemble. Science, 1999, 285(5433): 1548-1550

[53]

Krishnamurti T N, Kishtawal C M, Zhang Z Multimodel ensemble forecasts for weather and seasonal climate. J. Climate, 2000, 13(23): 4196-4216

[54]

Lau W K M, Waliser D E. Intraseasonal Variability in the Atmosphere-Ocean Climate System, 2012 2nd ed. Berlin: Springer-Verlag

[55]

Lee Y, Majda A J, Qi D. Preventing catastrophic filter divergence using adaptive additive inflation for baroclinic turbulence. Mon. Wea. Rev., 2017, 145(2): 669-682

[56]

Liebmann B, Smith C A. Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc, 1996, 77: 1275-1277

[57]

Lin J-L. The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean-atmosphere feedback analysis. J. Climate, 2007, 20(18): 4497-4525

[58]

Lin J-L, Kiladis G N, Mapes B E Tropical intraseasonal variability in 14 IPCC AR4 climate models Part I: Convective signals. J. Climate, 2006, 19: 2665-2690

[59]

J. Geophys. Res.: Oceans, 2008, 113 C2

[60]

Majda A J. Introduction to PDEs and Waves for the Atmosphere and Ocean, Courant Lecture Notes in Mathematics, 9, 2003, Providence: American Mathematical Society

[61]

Majda A J, Biello J A. A multiscale model for the intraseasonal oscillation. Proc. Natl. Acad. Sci. USA, 2004, 101(14): 4736-4741

[62]

Majda A J, Grote M J. Explicit off-line criteria for stable accurate time filtering of strongly unstable spatially extended systems. Proc. Natl. Acad. Sci. USA, 2007, 104: 1124-1129

[63]

Majda A J, Grote M J. Mathematical test models for superparametrization in anisotropic turbulence. Proc. Natl. Acad. Sci. USA, 2009, 106(14): 5470-5474

[64]

Majda A J, Harlim J. Filtering Turbulent Complex Systems, 2012, New York: Cambridge University Press

[65]

Majda A J, Stechmann S N. The skeleton of tropical intraseasonal oscillations. Proc. Natl. Acad. Sci. USA, 2009, 106(21): 8417-8422

[66]

Majda A J, Stechmann S N. Nonlinear dynamics and regional variations in the MJO skeleton. J. Atmos. Sci., 2011, 68: 3053-3071

[67]

Majda A J, Harlim J. Filtering Complex Turbulent Systems, 2012, New York: Cambridge University Press

[68]

McGovern A, Elmore K L, Gagne D J Using articial intelligence to improve real-time decisionmaking for high-impact weather. Bull. Amer. Meteor. Soc, 2017, 98(10): 2073-2090

[69]

Moncrie M W, Shapiro M, Slingo J, Molteni F. Collaborative research at the intersection of weather and climate. WMO Bull, 2007, 56: 204-211

[70]

Neelin J D, Yu J-Y. Modes of tropical variability under convective adjustment and the Madden-Julian oscillation, Part 1: Analytical theory. J. Atmos. Sci., 1994, 51: 1876-1894

[71]

Neelin J D, Zeng N. A quasi-equilibrium tropical circulation model-formulation. J. Atmos. Sci., 2000, 57: 1741-1766

[72]

Neena J M, Lee J Y, Waliser D Predictability of the Madden-Julian oscillation in the intraseasonal variability hindcast experiment (ISVHE). J. Climate, 2014, 27(12): 4531-4543

[73]

Ogrosky H R, Stechmann S N. Assessing the equatorial long-wave approximation: Asymptotics and observational data analysis. J. Atmos. Sci., 2015, 72: 4821-4843

[74]

Ogrosky H R, Stechmann S N. The MJO skeleton model with observation-based background state and forcing. Q. J. Roy. Meteor. Soc, 2015, 141(692): 2654-2669

[75]

Ogrosky H R, Stechmann S N. Identifying convectively coupled equatorial waves using theoretical wave eigenvectors. Mon. Wea. Rev., 2016

[76]

Ogrosky H R, Stechmann S N, Majda A J. Boreal summer intraseasonal oscillations in the MJO skeleton model with observation-based forcing. Dyn. Atmos. Oceans, 2017, 78: 38-56

[77]

Otarola A C, Querel R, Kerber F. Precipitable water vapor: Considerations on the water vapor scale height, dry bias of the radiosonde humidity sensors, and spatial and temporal variability of the humidity field, 2011

[78]

Palmer T N, Anderson D L T. The prospects for seasonal forecasting-A review paper. Q. J. Roy. Meteor. Soc, 1994, 120(518): 755-793

[79]

Peherstorfer B, Willcox K, Gunzburger M. Survey of multidelity methods in uncertainty propagation, inference, and optimization. SIAM Review, 2018, 60(3): 550-591

[80]

Penland C, Magorian T. Prediction of Nino 3 sea surface temperatures using linear inverse modeling. J. Climate, 1993, 6(6): 1067-1076

[81]

Penland C, Sardeshmukh P D. The optimal growth of tropical sea surface temperature anomalies. J. Climate, 1995, 8(8): 1999-2024

[82]

Bull. Amer. Meteor. Soc, 2015, 96 3

[83]

Schneider T, Lan S, Stuart A, Teixeira J. Earth system modeling 2.0: A blueprint for models that learn from observations and targeted high-resolution simulations. Geophys. Res. Lett., 2017, 44(24): 12396-12417

[84]

Slingo J M, Sperber K R, Boyle J S Intraseasonal oscillations in 15 atmospheric general circulation models: Results from an AMIP diagnostic subproject. Glim. Dyn., 1996, 12: 325-357

[85]

Stachnik J P, Waliser D E, Majda A J Evaluating MJO event initiation and decay in the skeleton model using an RMM-like index. J. Geophys. Res.: Atmos., 2015, 120(22): 11486-11508

[86]

Stechmann S N, Hottovy S. Unified spectrum of tropical rainfall and waves in a simple stochastic model. Geophys. Res. Lett., 2017

[87]

Stechmann S N, Majda A J. The structure of precipitation fronts for finite relaxation time. Theor. Comp. Fluid Dyn., 2006, 20: 377-404

[88]

Stechmann S N, Majda A J. Identifying the skeleton of the Madden-Julian oscillation in observational data. Mon. Wea. Rev., 2015, 143: 395-416

[89]

Stechmann S N, Majda A J, Khouider B. Nonlinear dynamics of hydrostatic internal gravity waves. Theor. Comp. Fluid Dyn., 2008, 22: 407-432

[90]

Stechmann S N, Ogrosky H R. The Walker circulation, diabatic heating, and outgoing longwave radiation. Geophys. Res. Lett., 2014, 41: 9097-9105

[91]

Thual S, Majda A J, Chen N, Stechmann S N. Simple stochastic model for El Nino with westerly wind bursts. Proc Natl. Acad. Sci. USA, 2016, 113(37): 10245-10250

[92]

Thual S, Majda A J, Stechmann S N. A stochastic skeleton model for the MJO. J. Atmos. Sci., 2014, 71: 697-715

[93]

Thual S, Majda A J, Stechmann S N. Asymmetric intraseasonal events in the stochastic skeleton MJO model with seasonal cycle. Glim. Dyn., 2015, 45: 603-618

[94]

Vitart F, Ardilouze C, Bonet A The subseasonal to seasonal (s2s) prediction project database. Bull. Amer. Meteor. Soc, 2017, 98(1): 163-173

[95]

Waliser D. Lau W K M, Waliser D E. Predictability and forecasting. Intraseasonal Variability in the Atmosphere-Ocean Climate System, 2012, Berlin: Springer-Verlag

[96]

Waliser D, Sperber K, Hendon H MJO simulation diagnostics. J. Climate, 2009, 22: 3006-3030

[97]

Waliser D, Weickmann K, Dole R The experimental MJO prediction project. Bull. Amer. Meteor. Soc, 2006, 87(4): 425-432

[98]

Waliser D E, Jones C, Schemm J K E, Graham N E. A statistical extended-range tropical forecast model based on the slow evolution of the Madden-Julian oscillation. J. Climate, 1999, 12(7): 1918-1939

[99]

Waliser D E, Lau K M, Stern W, Jones C. Potential predictability of the Madden-Julian oscillation. Bull. Amer. Meteor. Soc, 2003, 84(1): 33-50

[100]

Wang L, Yuan X, Ting M, Li C. Predicting summer Arctic sea ice concentration intraseasonal variability using a vector autoregressive model. J. Climate, 2016, 29(4): 1529-1543

[101]

Wheeler M, Kiladis G N. Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber-frequency domain. J. Atmos. Sci., 1999, 56(3): 374-399

[102]

Wheeler M C, Hendon H H. An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 2004, 132(8): 1917-1932

[103]

Whitaker J S, Wei X, Vitart F. Improving week-2 forecasts with multimodel reforecast ensembles. Mon. Wea. Rev., 2006, 134(8): 2279-2284

[104]

J. Geophys. Res.: Atmos., 2009, 114 D18

[105]

Yang Q, Majda A J. Upscale impact of mesoscale disturbances of tropical convection on synoptic-scale equatorial waves in two-dimensional flows. J. Atmos. Sci., 2017, 74(9): 3099-3120

[106]

Yang S-C, Baker D, Li H Data assimilation as synchronization of truth and model: Experiments with the three-variable lorenz system. J. Atmos. Sci., 2006, 63(9): 2340-2354

[107]

Yu J-Y, Neelin J D. Modes of tropical variability under convective adjustment and the Madden-Julian oscillation, Part II: Numerical results. J. Atmos. Sci., 1994, 51(13): 1895-1914

[108]

Zebiak S E, Cane M A. A model El Nino-Southern Oscillation. Mon. Wea. Rev., 1987, 115(10): 2262-2278

AI Summary AI Mindmap
PDF

88

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/