On the Global Well-Posedness of 3-D Boussinesq System with Variable Viscosity

Hammadi Abidi , Ping Zhang

Chinese Annals of Mathematics, Series B ›› 2019, Vol. 40 ›› Issue (5) : 643 -688.

PDF
Chinese Annals of Mathematics, Series B ›› 2019, Vol. 40 ›› Issue (5) : 643 -688. DOI: 10.1007/s11401-019-0156-2
Article

On the Global Well-Posedness of 3-D Boussinesq System with Variable Viscosity

Author information +
History +
PDF

Abstract

In this paper, the authors first consider the global well-posedness of 3-D Boussinesq system, which has variable kinematic viscosity yet without thermal conductivity and buoyancy force, provided that the viscosity coefficient is sufficiently close to some positive constant in L and the initial velocity is small enough in $\dot{B}_{3,1}^0(\mathbb{R}^3)$. With some thermal conductivity in the temperature equation and with linear buoyancy force θe 3 on the velocity equation in the Boussinesq system, the authors also prove the global well-posedness of such system with initial temperature and initial velocity being sufficiently small in L 1(ℝ3) and $\dot{B}_{3,1}^0(\mathbb{R}^3)$ respectively.

Keywords

Boussinesq systems / Littlewood-Paley theory / Variable viscosity / Maximal regularity of heat equation

Cite this article

Download citation ▾
Hammadi Abidi, Ping Zhang. On the Global Well-Posedness of 3-D Boussinesq System with Variable Viscosity. Chinese Annals of Mathematics, Series B, 2019, 40(5): 643-688 DOI:10.1007/s11401-019-0156-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abidi H. Équation de Navier-Stokes avec densité et viscosité variables dans l’espace critique. Rev. Mat. Iberoam., 2007, 23: 537-586

[2]

Abidi H. Sur l’unicité pour le système de Boussinesq avec diffusion non linéaire. J. Math. Pures Appl., 2009, 91: 80-99

[3]

Abidi H, Hmidi T. On the global well-posedness for Boussinesq system. J. Differential Equations, 2007, 233: 199-220

[4]

Abidi H, Zhang P. On the global well-posedness of 3-D density-dependent Navier-Stokes system with variable viscosity. Sci. China Math., 2015, 58: 1129-1150

[5]

Abidi H, Zhang P. On the well-posedness of 2-D density-dependent Navier-Stokes system with variable viscosity. J. Differential Equations, 2015, 259: 3755-3802

[6]

Abidi H, Zhang P. On the global well-posedness of 2-D boussinesq system with variable viscosity. Adv. Math., 2017, 305: 1202-1249

[7]

Bahouri H, Chemin J Y, Danchin R. Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften, 2011, Heidelberg: Springer-Verlag

[8]

Bergh, J. and Löfstrom, J., Interpolation Spaces, An Introduction, Grundlehren der Mathematischen Wissenschaften, 223, Springer-Verlag, Berlin-New York, 1976.

[9]

Bony J M. Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann. Sci. Ecole Norm. Sup., 1981, 14: 209-246

[10]

Cao C, Wu J. Global regularity for the two-dimensional anisotropic Boussinesq equations with vertical dissipation. Arch. Ration. Mech. Anal., 2013, 208: 985-1004

[11]

Chae D. Global regularity for the 2D Boussinesq equations with partial viscosity terms. Adv. Math., 2006, 203: 497-513

[12]

Córdoba A, Córdoba D. A maximum principle applied to quasi-geostrophic equations. Coram. Math. Phys., 2004, 249: 511-528

[13]

Cwikel M. On (L p0(A 0), L p1 (A 1))θ,q. Proc. Amer. Math. Soc., 1974, 44: 286-292

[14]

Danchin R, Paicu M. Les théorèmes de Leray et de Fujita-Kato pour le système de Boussinesq partiellement visqueux. Bull. Soc. Math. France, 2008, 136: 261-309

[15]

Danchin R, Paicu M. Global existence results for the anisotropic Boussinesq system in dimension two. Math. Models Methods Appl. Sci., 2011, 21: 421-457

[16]

Desjardins B. Regularity results for two-dimensional flows of multiphase viscous fluids. Arch. Ration. Mech. Anal, 1997, 137: 135-158

[17]

Díaz J I, Galiano G. Existence and uniqueness of solutions of the Boussinesq system with nonlinear thermal diffusion. Topol. Methods Nonlinear Anal., 1998, 11: 59-82

[18]

Grafakos, L., Classical Fourier Analysis, 2nd ed., Graduate Texts in Mathematics, 249, Springer-Verlag, New York, 2008.

[19]

Hmidi T. On a maximum principle and its application to logarithmically critical Boussinesq system. Anal. PDE, 2011, 4: 247-284

[20]

Hmidi T, Keraani S. On the global well-posedness of the two-dimensional Boussinesq system with a zero diffusivity. Adv. Differential Equations, 2007, 12: 461-480

[21]

Hmidi T, Keraani S, Rousset F. Global well-posedness for a Boussinesq-Navier-Stokes system with critical dissipation. J. Differential Equations, 2010, 249: 2147-2174

[22]

Hmidi T, Keraani S, Rousset F. Global well-posedness for Euler-Boussinesq system with critical dissipation. Coram. Partial Differential Equations, 2011, 36: 420-445

[23]

Hou T, Li C. Global well-posedness of the viscous Boussinesq equations. Discrete Contin. Dyn. Syst., 2005, 12: 1-12

[24]

Huang J, Paicu M. Decay estimates of global solutions to 2D incompressible inhomogeneous Navier-Stokes equations with variable viscosity. Discrete Contin. Dyn. Syst., 2011, 34(11): 4647-4669

[25]

Lemarié-Rieusset, P. G., Recent Developments in the Navier-Stokes Problem, Chapman & Hall/CRC Research Notes in Mathematics, 431, Chapman & Hall/CRC, Boca Raton, FL, 2002.

[26]

Meyer, Y., Wavelets, Paraproducts and Navier-Stokes, Current Developments in Mathematics, 1996, International Press, Cambridge, 1999.

[27]

Meyer, Y., Ondelettes et Opérateurs, Tome, 3, Hermann, Paris, 1991.

[28]

Pedloski J. Geophysical Fluid Dynamics, 1987, New York: Springer-Verlag

[29]

Planchon F. An extension of the Beale-Kato-Majda criterion for the Euler equations. Coram. Math. Phys., 2003, 232: 319-326

[30]

Rodrigues J F. Weak solutions for thermoconvective flows of Boussinesq-Stefan type, Mathematical Topics in Fluid Mechanics, Pitman Res. Notes Math. Ser., 1992, 274: 93-116

[31]

Schonbek M E. Large time behaviour of solutions to the Navier-Stokes equations. Coram. Partial Differential Equations, 1986, 11: 733-763

[32]

Wang C, Zhang Z. Global well-posedness for the 2-D Boussinesq system with the temperature-dependent viscosity and thermal diffusivity. Adv. Math., 2011, 228: 43-62

[33]

Wu J. Lower bounds for an integral involving fractional Laplacians and the generalized Navier-Stokes equations in Besov spaces. Coram. Math. Phys., 2006, 263: 803-831

AI Summary AI Mindmap
PDF

176

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/