The Automorphism Group of a Finite p-Group with a Cyclic Frattini Subgroup

Heguo Liu , Yulei Wang

Chinese Annals of Mathematics, Series B ›› 2019, Vol. 40 ›› Issue (4) : 613 -642.

PDF
Chinese Annals of Mathematics, Series B ›› 2019, Vol. 40 ›› Issue (4) : 613 -642. DOI: 10.1007/s11401-019-0155-3
Article

The Automorphism Group of a Finite p-Group with a Cyclic Frattini Subgroup

Author information +
History +
PDF

Abstract

Let G be a finite p-group with a cyclic Frattini subgroup. In this paper, the automorphism group of G is determined.

Keywords

Finite p-groups / Frattini subgroups / Automorphisms

Cite this article

Download citation ▾
Heguo Liu, Yulei Wang. The Automorphism Group of a Finite p-Group with a Cyclic Frattini Subgroup. Chinese Annals of Mathematics, Series B, 2019, 40(4): 613-642 DOI:10.1007/s11401-019-0155-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Robinson D J S. A Course in the Theory of Groups, 1996 2nd ed. New York: Springer-Verlag

[2]

Winter D. The automorphism group of an extraspecial p-group. Rocky Mountain J. Math., 1972, 2: 159-168

[3]

Dietz J. Automorphisms of p-group given as cyclic-by-elementary abelian central extensions. J. Algebra, 2001, 242: 417-432

[4]

Liu H G, Wang Y L. The automorphism group of a generalized extraspecial p-group. Sci. China Math., 2010, 53(2): 315-334

[5]

Wang Y L, Liu H G. Generalization of Winter’s theorem and Dietz’s theorem. Chin. J. Contemp. Math., 2012, 33(4): 375-394

[6]

Bornand D. Elementary abelian subgroups in p-groups of class 2, 2009, Lausanne: École Polytechnique Fédérale de lausanne

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/