Sobolev Spaces on Quasi-Kähler Complex Varieties

Haisheng Liu

Chinese Annals of Mathematics, Series B ›› 2019, Vol. 40 ›› Issue (4) : 599 -612.

PDF
Chinese Annals of Mathematics, Series B ›› 2019, Vol. 40 ›› Issue (4) : 599 -612. DOI: 10.1007/s11401-019-0154-4
Article

Sobolev Spaces on Quasi-Kähler Complex Varieties

Author information +
History +
PDF

Abstract

If V is an irreducible quasi-Kähler complex variety and E is a vector bundle over reg(V), the author proves that W 0 1,2(reg(V), E) = W1,2(reg(V), E), and that for dim reg(V) > 1, the natural inclusion W1,2(reg(V), E) ↪ L 2(reg(V), E) is compact, the natural inclusion ${W^{1,2}}\left( {{\rm{reg}}\left( V \right),\;E} \right)\hookrightarrow {L^{{{2v} \over {v - 1}}}}\left( {{\rm{reg}}\left( V \right),\;E} \right)$ is continuous.

Keywords

Quasi-Kähler variety / Sobolev spaces

Cite this article

Download citation ▾
Haisheng Liu. Sobolev Spaces on Quasi-Kähler Complex Varieties. Chinese Annals of Mathematics, Series B, 2019, 40(4): 599-612 DOI:10.1007/s11401-019-0154-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adams R A, Fournier J J. Sobolev Spaces, 2003, Amsterdam: Academic Press, Elsevier 140

[2]

Akhiezer N I, Glazman I M. Theory of linear operators in Hilbert space, 1993, New York: Dover Publications, Inc.

[3]

Aubin T. Some nonlinear problems in Riemannian geometry, Springer Monographs in Mathematics, 1998, Berlin: Springer-Verlag

[4]

Bei F. Sobolev spaces and Bochner Laplacian on complex projective varieties and stratified pseudomani-folds. The Journal of Geometric Analysis, 2017, 27(1): 746-796

[5]

Berline N, Getzler E, Vergne M. Heat kernels and Dirac operators, Grundlehren Text Editions, 2004, Berlin: Springer-Verlag

[6]

Chavel I, Feldman E. Spectra of domains in compact manifolds. J. Funct. Anal., 1978, 30: 198-222

[7]

Frohlicher A. Zur differential geometrie der komplexen Strukturen. Math. Ann., 1955, 129: 50-95

[8]

Grant C, Milman P. Metrics for singular analytic spaces. Pacific J. Math., 1995, 168(1): 61-156

[9]

Gray A. Minimal varieties and almost Hermitian submanifolds. The Michigan Mathematical Journal, 1965, 12(3): 273-287

[10]

Gray A. Nearly Kahler manifolds. Journal of Differential Geometry, 1970, 4: 283-309

[11]

Griffiths P, Harris J. Principles of Algebraic Geometry, 1978, New York: Wiley

[12]

Grigor’yan A. Heat kernel and analysis on manifolds, 2009, Providence, RI: American Mathematical Society International Press, Boston, MA

[13]

Hironaka H. Resolution of singularities of an algebraic variety over a field of characteristic zero, I, II. Ann. Math., 1964, 79: 109-326

[14]

Li P, Tian G. On the heat kernel of the Bergmann metric on algebraic varieties. J. Amer. Math. Soc., 1995, 8(4): 857-877

[15]

Ma X, Marinescu G. Holomorphic Morse Inequalities and Bergman Kernels, Progress in Mathematics, 254, 2007, Basel: Birkhäuser Verlag

[16]

Michael J H, Simon L. Sobolev and mean-value inequalities on generalized submanifolds ofℝ n. Comm. Pure Appl. Math., 1973, 26: 361-379

[17]

Newlander A, Nirenberg L. Complex analytic coordinates in almost complex manifolds. Ann. Math., 1957, 65: 391-404

[18]

Reed M, Simon B. Methods of Modern Mathematical Physics, I, Functional Analysis, 1972, New York, London: Academic Press

[19]

Reed M, Simon B. Methods of Modern Mathematical Physics, II, Fourier Analysis, 1975, New York, London: Academic Press

[20]

Wehrheim K. Uhlenbeck compactness, EMS Series of Lectures in Mathematics, 2004, Zuärich: European Mathematical Society

[21]

Yoshikawa K I. Degeneration of algebraic manifolds and te spetrum of Laplacian. Nagoya Math. J., 1997, 146: 83-120

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/