Sobolev Spaces on Quasi-Kähler Complex Varieties
Haisheng Liu
Chinese Annals of Mathematics, Series B ›› 2019, Vol. 40 ›› Issue (4) : 599 -612.
Sobolev Spaces on Quasi-Kähler Complex Varieties
If V is an irreducible quasi-Kähler complex variety and E is a vector bundle over reg(V), the author proves that W 0 1,2(reg(V), E) = W1,2(reg(V), E), and that for dimℂ reg(V) > 1, the natural inclusion W1,2(reg(V), E) ↪ L 2(reg(V), E) is compact, the natural inclusion ${W^{1,2}}\left( {{\rm{reg}}\left( V \right),\;E} \right)\hookrightarrow {L^{{{2v} \over {v - 1}}}}\left( {{\rm{reg}}\left( V \right),\;E} \right)$ is continuous.
Quasi-Kähler variety / Sobolev spaces
/
| 〈 |
|
〉 |