PDF
Abstract
If V is an irreducible quasi-Kähler complex variety and E is a vector bundle over reg(V), the author proves that W 0 1,2(reg(V), E) = W1,2(reg(V), E), and that for dimℂ reg(V) > 1, the natural inclusion W1,2(reg(V), E) ↪ L 2(reg(V), E) is compact, the natural inclusion ${W^{1,2}}\left( {{\rm{reg}}\left( V \right),\;E} \right)\hookrightarrow {L^{{{2v} \over {v - 1}}}}\left( {{\rm{reg}}\left( V \right),\;E} \right)$ is continuous.
Keywords
Quasi-Kähler variety
/
Sobolev spaces
Cite this article
Download citation ▾
Haisheng Liu.
Sobolev Spaces on Quasi-Kähler Complex Varieties.
Chinese Annals of Mathematics, Series B, 2019, 40(4): 599-612 DOI:10.1007/s11401-019-0154-4
| [1] |
Adams R A, Fournier J J. Sobolev Spaces, 2003, Amsterdam: Academic Press, Elsevier 140
|
| [2] |
Akhiezer N I, Glazman I M. Theory of linear operators in Hilbert space, 1993, New York: Dover Publications, Inc.
|
| [3] |
Aubin T. Some nonlinear problems in Riemannian geometry, Springer Monographs in Mathematics, 1998, Berlin: Springer-Verlag
|
| [4] |
Bei F. Sobolev spaces and Bochner Laplacian on complex projective varieties and stratified pseudomani-folds. The Journal of Geometric Analysis, 2017, 27(1): 746-796
|
| [5] |
Berline N, Getzler E, Vergne M. Heat kernels and Dirac operators, Grundlehren Text Editions, 2004, Berlin: Springer-Verlag
|
| [6] |
Chavel I, Feldman E. Spectra of domains in compact manifolds. J. Funct. Anal., 1978, 30: 198-222
|
| [7] |
Frohlicher A. Zur differential geometrie der komplexen Strukturen. Math. Ann., 1955, 129: 50-95
|
| [8] |
Grant C, Milman P. Metrics for singular analytic spaces. Pacific J. Math., 1995, 168(1): 61-156
|
| [9] |
Gray A. Minimal varieties and almost Hermitian submanifolds. The Michigan Mathematical Journal, 1965, 12(3): 273-287
|
| [10] |
Gray A. Nearly Kahler manifolds. Journal of Differential Geometry, 1970, 4: 283-309
|
| [11] |
Griffiths P, Harris J. Principles of Algebraic Geometry, 1978, New York: Wiley
|
| [12] |
Grigor’yan A. Heat kernel and analysis on manifolds, 2009, Providence, RI: American Mathematical Society International Press, Boston, MA
|
| [13] |
Hironaka H. Resolution of singularities of an algebraic variety over a field of characteristic zero, I, II. Ann. Math., 1964, 79: 109-326
|
| [14] |
Li P, Tian G. On the heat kernel of the Bergmann metric on algebraic varieties. J. Amer. Math. Soc., 1995, 8(4): 857-877
|
| [15] |
Ma X, Marinescu G. Holomorphic Morse Inequalities and Bergman Kernels, Progress in Mathematics, 254, 2007, Basel: Birkhäuser Verlag
|
| [16] |
Michael J H, Simon L. Sobolev and mean-value inequalities on generalized submanifolds ofℝ n. Comm. Pure Appl. Math., 1973, 26: 361-379
|
| [17] |
Newlander A, Nirenberg L. Complex analytic coordinates in almost complex manifolds. Ann. Math., 1957, 65: 391-404
|
| [18] |
Reed M, Simon B. Methods of Modern Mathematical Physics, I, Functional Analysis, 1972, New York, London: Academic Press
|
| [19] |
Reed M, Simon B. Methods of Modern Mathematical Physics, II, Fourier Analysis, 1975, New York, London: Academic Press
|
| [20] |
Wehrheim K. Uhlenbeck compactness, EMS Series of Lectures in Mathematics, 2004, Zuärich: European Mathematical Society
|
| [21] |
Yoshikawa K I. Degeneration of algebraic manifolds and te spetrum of Laplacian. Nagoya Math. J., 1997, 146: 83-120
|