Boundedness of Commutators of θ-Type Calderón-Zygmund Operators on Non-homogeneous Metric Measure Spaces

Chol Ri , Zhenqiu Zhang

Chinese Annals of Mathematics, Series B ›› 2019, Vol. 40 ›› Issue (4) : 585 -598.

PDF
Chinese Annals of Mathematics, Series B ›› 2019, Vol. 40 ›› Issue (4) : 585 -598. DOI: 10.1007/s11401-019-0153-5
Article

Boundedness of Commutators of θ-Type Calderón-Zygmund Operators on Non-homogeneous Metric Measure Spaces

Author information +
History +
PDF

Abstract

Let (X, d, μ) be a metric measure space satisfying both the upper doubling and the geometrically doubling conditions in the sense of Hytönen. In this paper, the authors obtain the boundedness of the commutators of θ-type Calderón-Zygmund operators with RBMO functions from L (μ) into RBMO(μ) and from $H_{{\rm{at}}}^{1,\;\infty }\left( \mu \right)$ into L 1 (μ), respectively. As a consequence of these results, they establish the L p (μ) boundedness of the commutators on the non-homogeneous metric spaces.

Keywords

Non-homogeneous space / θ-Type Calderón-Zygmund operator / Commutator / RBMO(μ) space / $H_{{\rm{at}}}^{1,\;\infty }\left( \mu \right)$ space

Cite this article

Download citation ▾
Chol Ri, Zhenqiu Zhang. Boundedness of Commutators of θ-Type Calderón-Zygmund Operators on Non-homogeneous Metric Measure Spaces. Chinese Annals of Mathematics, Series B, 2019, 40(4): 585-598 DOI:10.1007/s11401-019-0153-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bui T A, Duong X T. Hardy spaces, regularized BMO spaces and the boundedness of Calderón-Zygmund operators on non-homogeneous spaces. J. Geom. Anal., 2013, 23: 895-932

[2]

Calderón A P. Cauchy integrals on Lipschitz curves and related operators. Proc. Natl. Acad. Sci. USA, 1965, 53: 1092-1099

[3]

Calderón A P. Commutators of singular integral operators. Proc. Natl. Acad. Sci. USA., 1977, 74: 1324-1327

[4]

Coifman R, Rochberg R, Weiss G. Factorization theorems for Hardy spaces in several variables. Ann. Math., 1976, 103(3): 611-635

[5]

Coifman R, Weiss G. Analyse harmonique non-commutative sur certains espaces homogenes, 1971, Cham: Springer-Verlag

[6]

Coifman R, Weiss G. Extensions of Hardy spaces and their use in analysis. Bull. Amer. Math. Soc., 1977, 83: 569-645

[7]

Fu X, Hu G, Yang D. A remark on the boundedness of Calderón-Zygmund operators in non-homogeneouspaces. Acta Math. Sinica, (Engl. Ser.), 2007, 23: 449-456

[8]

Heinenon J. Lectures on Analysis on Metric Spaces, 2001, New York: Springer-Verlag

[9]

Hytönen T. A framework for non-homogeneous analysis on metric spaces, and the RBMO space of Tolsa. Publ. Mat., 2010, 54: 485-504

[10]

Hytönen T, Liu S, Yang D, Yang D. Boundedness of Calderón-Zygmund operators on non-homogeneous metric measure spaces. Can. J. Math., 2012, 64: 892-923

[11]

Hytönen T, Yang D, Yang D. The Hardy space H 1 on non-homogeneous metric spaces. Math. Proc. Camb. Phil. Soc., 2012, 153: 9-31

[12]

Janson S. Mean oscillation and commutators of singular integral operators. Ark. Mat., 1978, 16(2): 263-270

[13]

Liu S, Yang D, Yang D. Boundedness of Calderón-Zygmund operators on non-homogeneous metric measure spaces: equivalent characterizations. J. Math. Anal. Appl., 2012, 386: 258-272

[14]

Perez C. Endpoint estimates for commutators of singular integral operators. J. Funct. Anal., 1995, 128(1): 163-185

[15]

Tolsa X. BMO, H1 and Calderón-Zygmund operators for non doubling measures. Math. Ann., 2001, 319: 89-149

[16]

Xie R, Shu L. θ-type Calderón-Zygmund operators with non-doubling measures. Acta Math. App. Sinica, (Engl. Ser.), 2013, 29(2): 263-280

[17]

Yabuta K. Generalization of Calderón-Zygmund operators. Studia Math., 1985, 82: 17-31

[18]

Yang D, Yang D, Hu G. The Hardy space H1 with non-doubling measures and their applications, 2013, Cham: Springer-Verlag

AI Summary AI Mindmap
PDF

166

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/