On Constacyclic Codes over $\boldsymbol{Z}_{\boldsymbol{p}_{1}\boldsymbol{p}_{2}\cdots\boldsymbol{p}_{\boldsymbol{t}}}$

Derong Xie , Qunying Liao

Chinese Annals of Mathematics, Series B ›› 2019, Vol. 40 ›› Issue (4) : 555 -566.

PDF
Chinese Annals of Mathematics, Series B ›› 2019, Vol. 40 ›› Issue (4) : 555 -566. DOI: 10.1007/s11401-019-0151-7
Article

On Constacyclic Codes over $\boldsymbol{Z}_{\boldsymbol{p}_{1}\boldsymbol{p}_{2}\cdots\boldsymbol{p}_{\boldsymbol{t}}}$

Author information +
History +
PDF

Abstract

Let t ≥ 2 be an integer, and let p 1, ⋯, p t be distinct primes. By using algebraic properties, the present paper gives a sufficient and necessary condition for the existence of non-trivial self-orthogonal cyclic codes over the ring ${Z_{{p_1}{p_2} \cdots {p_t}}}$ and the corresponding explicit enumerating formula. And it proves that there does not exist any self-dual cyclic code over ${Z_{{p_1}{p_2} \cdots {p_t}}}$.

Keywords

Ideal / Isomorphism / Constacyclic code / Self-orthogonal code / Self-orthogonal cyclic code

Cite this article

Download citation ▾
Derong Xie, Qunying Liao. On Constacyclic Codes over $\boldsymbol{Z}_{\boldsymbol{p}_{1}\boldsymbol{p}_{2}\cdots\boldsymbol{p}_{\boldsymbol{t}}}$. Chinese Annals of Mathematics, Series B, 2019, 40(4): 555-566 DOI:10.1007/s11401-019-0151-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Berlekamp E R. Negacyclic Codes for the Lee Metric, 1967, Chapel Hill, N.C.: North Carolina Press

[2]

Blackford T. Negacyclic codes over Z4 of even length. IEEE Trans. Inform. Theory, 2003, 49(6): 1417-1424

[3]

Cao Y L. On constacyclic codes over finite chain rings. Finite Fields and Their Applications, 2013, 24: 124-135

[4]

Dinh H Q. Constacyclic codes of length p s over ${F_{{p^m}}} + u{F_{{p^m}}}$. Journal of Algebra, 2010, 324(5): 940-950

[5]

Dinh H Q, Wang L Q, Zhu S X. Negacyclic codes of length 2p s over ${F_{{p^m}}} + u{F_{{p^m}}}$. Finite Fields and Their Applications, 2015, 31: 178-201

[6]

Garrett P. The Mathematics of Coding Theory, 2005, Beijing: China Machine Press

[7]

Hammons R, Kumar P V, Calderbank A R The Z 4-linearity of Kerdock, Preparata, Goethals and related codes. IEEE Trans. Inform. Theory, 1994, 40(2): 301-319

[8]

Huffman W C, Pless V. Fundamentals of Error-Correcting Codes, 2003, New York: Cambridge University Press

[9]

Jacobson N. Basic Algebra I, 1985, New York: W. H. Freeman and Company

[10]

Jia Y, Ling S, Xing C P. On self-dual cyclic codes over finite fields. IEEE Trans. Inform. Theory, 2011, 57(4): 2243-2251

[11]

Liao Q Y, Li Y B, Liao H. The existence for self-orthogonal cyclic codes over finite fields. Acta Mathematica Sinica, 2014, 57(1): 117-124

[12]

Nechaev A A. Kerdock code in a cyclic form. Discrete Mathematics and Applications, 1991, 1(4): 365-384

[13]

Pan C D, Pan C B. Elementary Number Theory, 1992, Beijing: Peking University Press

[14]

Prange E. Cyclic Error-Correcting Codes in Two Symbols, 1957, Cambridge: Air Force Cambridge Research Center

[15]

Zhu S X, Kai X S. Dual and self-dual negacyclic codes of even length over ${Z_{{2^a}}}$. Discrete Mathematics, 2009, 309(8): 2382-2391

AI Summary AI Mindmap
PDF

139

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/