Approximate Forward Attractors of Non-Autonomous Dynamical Systems

Xuewei Ju , Desheng Li , Chunqiu Li , Ailing Qi

Chinese Annals of Mathematics, Series B ›› 2019, Vol. 40 ›› Issue (4) : 541 -554.

PDF
Chinese Annals of Mathematics, Series B ›› 2019, Vol. 40 ›› Issue (4) : 541 -554. DOI: 10.1007/s11401-019-0150-8
Article

Approximate Forward Attractors of Non-Autonomous Dynamical Systems

Author information +
History +
PDF

Abstract

In this paper the forward asymptotical behavior of non-autonomous dynamical systems and their attractors are investigated. Under general conditions, the authors show that every neighborhood of pullback attractor has forward attracting property.

Keywords

Non-autonomous dynamical systems / Pullback attractors / Forward attractors / Uniform attractors / Approximate forward attractors

Cite this article

Download citation ▾
Xuewei Ju, Desheng Li, Chunqiu Li, Ailing Qi. Approximate Forward Attractors of Non-Autonomous Dynamical Systems. Chinese Annals of Mathematics, Series B, 2019, 40(4): 541-554 DOI:10.1007/s11401-019-0150-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Caraballo T, Kloeden P E, Real J. Pullback and forward attractors for a damped wave equation with delays. Stoch. Dyn., 2004, 4: 405-423

[2]

Caraballo T, Márquez-Durán A M, Real J. Pullback and forward attractors for a 3D LANS-α model with delay. Discrete Contin. Dyn. Syst., 2006, 15: 559-578

[3]

Carvalho A N, Langa J A, Robinson J C, Suárez A. Characterization of non-autonomous attractors of a perturbed infinite-dimensional gradient system. J. Diff. Eqs., 2007, 236: 570-603

[4]

Carvalho A N, Langa J A, Robinson J C. Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Applied Mathematical Sciences, 2013, New York: Springer-Verlag 182

[5]

Chepyzhov V V. Uniform attractors of dynamical processes and non-autonomous equations of mathematical physis. Russian Math. Surveys, 2013, 68: 349-382

[6]

Chepyzhov V V, Vishik M I. Attractors of nonautonmous dynamical systems and their dimension. J. Math. Pures Appl., 1994, 73: 279-333

[7]

Chepyzhov V V, Vishik M I. Attractors of Equations of Mathematical Physics, 2002, Providence, RI: Amer. Math. Soc.

[8]

Crauel H. A uniformly exponential random forward attractor which is not a pullback attractor. Arch. Math., 2002, 78: 329-336

[9]

Crauel H, Debussche A, Flandoli F. Random attractors. J. Dynam. Differential Equations, 1997, 9: 307-341

[10]

Crauel H, Flandoli F. Attractors for random dynamical systems. Probab. Theory Related Fields, 1994, 100: 365-393

[11]

Grasselli M, Pata V. Uniform attractors of nonautonomous dynamical systems with memory. Progr. Nonlinear Differential Equations Appl., 2002, 50: 155-178

[12]

Langa J A, Bernal A R, Suárez A. On the long time behavior of non-autonomous Lotka-Volterra models with diffusion via the subsupertrajectory method. J. Diff. Eqs., 2010, 249: 414-445

[13]

Langa J A, Robinson J C, Bernal A R Existence and nonexistence of unbounded forward attractor for a class of non-autonomous reaction diffusion equations. Discrete Contin. Dyn. Syst., 2007, 18: 483-497

[14]

Langa J A, Robinson J C, Suárez A. Forwards and pullback behaviour of a non-autonomous Lotka-Volterra system. Nonlinearity, 2003, 16: 1277-1293

[15]

Li D S, Kloeden P E. On the dynamics of nonautonomous periodic general dynamical systems and differential inclusions. J. Diff. Eqs., 2006, 224: 1-38

[16]

Rasmussen M. Towards a bifurcation theory for non-autonomous difference equations. J. Difference Equ. Appl., 2006, 12: 297-312

[17]

Rasmussen M. Attractivity and Bifurcation for Non-Autonomous Dynamical Systems, Lecture Notes in Mathematics, 2007, Berlin, Heidelberg, New York: Springer-Verlag 1907

[18]

Sanjurjo J M R. On the structure of uniform attractors. J. Math. Anal. Appl., 1995, 192(2): 519-528

[19]

Vishik M I. Asymptotic Behavior of Solutions of Evolutionary Equations, 1992, Cambriage, England: Cambridge University Press

[20]

Wang Y J, Li D S, Kloeden P E. On the asymptotical behavior of nonautonomous dynamical systems. Nonlinear Anal., 2004, 59: 35-53

[21]

Wang Y, Zhong C, Zhou S. Pullback attractors of nonautonomous dynamical system. Discrete Contin. Dyn. Syst., 2006, 16: 586-614

[22]

Wang Y, Zhou S. Kernel sections and uniform attractors of multi-valued semiprocesses. J. Diff. Eqs., 2007, 232(2): 573-622

[23]

Zelik S. Strong uniform attractors for non-autonomous dissipative PDEs with non translation-compact external forces. Discrete Contin. Dyn. Syst. Ser. B, 2015, 5(3): 781-810

[24]

Zhong C K, Li D S, Kloeden P E. Uniform attractors of periodic and asymptotically periodic dynamical systems. Discrete Contin. Dyn. Syst., 2005, 12: 213-232

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/