Pseudo Asymptotically Periodic Solutions for Volterra Difference Equations of Convolution Type

Zhinan Xia

Chinese Annals of Mathematics, Series B ›› 2019, Vol. 40 ›› Issue (4) : 501 -514.

PDF
Chinese Annals of Mathematics, Series B ›› 2019, Vol. 40 ›› Issue (4) : 501 -514. DOI: 10.1007/s11401-019-0148-2
Article

Pseudo Asymptotically Periodic Solutions for Volterra Difference Equations of Convolution Type

Author information +
History +
PDF

Abstract

In this paper, the author studies the existence and uniqueness of discrete pseudo asymptotically periodic solutions for nonlinear Volterra difference equations of convolution type, where the nonlinear perturbation is considered as Lipschitz condition or non-Lipschitz case, respectively. The results are a consequence of application of different fixed point theorems, namely, the contraction mapping principle, the Leray-Schauder alternative theorem and Matkowski’s fixed point technique.

Keywords

Pseudo asymptotically periodic function / Volterra difference equations / Contraction mapping principle / Leray-Schauder alternative theorem

Cite this article

Download citation ▾
Zhinan Xia. Pseudo Asymptotically Periodic Solutions for Volterra Difference Equations of Convolution Type. Chinese Annals of Mathematics, Series B, 2019, 40(4): 501-514 DOI:10.1007/s11401-019-0148-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Agarwal R P, Cuevas C, Dantas F. Almost automorphy profile of solutions for difference equations of Volterra type. J. Appl. Math. Comput., 2013, 42(1–2): 1-18

[2]

Agarwal R P, Cuevas C, Frasson M V S. Semilinear functional difference equations with infinite delay. Math. Comput. Modelling, 2012, 55(3–4): 1083-1105

[3]

Alvarez-Pardo E, Lizama C. Pseudo asymptotic solutions of fractional order semilinear equations. Banach J. Math. Anal, 2013, 7(2): 42-52

[4]

Andrade F, Cuevas C, Silva C, Soto H. Asymptotic periodicity for hyperbolic evolution equations and applications. Appl. Math. Comput., 2015, 269: 169-195

[5]

Campoa L D, Pinto M, Vidal C. Almost and asymptotically almost periodic solutions of abstract retarded functional difference equations in phase space. J. Difference Equ. Appl., 2011, 17(6): 915-934

[6]

Castro A, Cuevas C, Dantas F, Soto H. About the behavior of solutions for Volterra difference equations with infintie delay. J. Comput. Appl. Math., 2013, 255: 44-59

[7]

Chen, X. and Du, Z. J., Existence of positive periodic solutions for a neutral delay predator-prey model with Hassell-Varley type functional response and impulse, Qual. Theory Dyn. Syst., 2017, DOI: https://doi.org/10.1007/s12346-017-0223-6.

[8]

Choi S K, Koo N. Almost periodic solutions of nonlinear discrete Volterra equations with unbounded delay. Adv. Difference Equ., 2008, 2008: 1-15

[9]

Cuevas C, Dantas F, Choquehuanca M, Soto H. l p-boundedness properties for Volterra difference equations. Appl. Math. Comput., 2013, 219(12): 6986-6999

[10]

Cuevas C, de Souza J C. ${\cal S}$-asymptocially ω-periodic solutions of semilinear fractional integro-differential equations. Appl. Math. Lett., 2009, 22(6): 865-870

[11]

Cuevas C, Henríquez H R, Lizama C. On the existence of almost automorphic solutions of Volterra difference equations. J. Difference Equ. Appl., 2012, 18(11): 1931-1946

[12]

Cuevas C, Henríquez H R, Soto H. Asymptotically periodic solutions of fractional differential equations. Appl. Math. Comput., 2014, 236: 524-545

[13]

Cuevas C, Lizama C. Semilinear evolution equation of second order via maximal regularity. Adv. Difference Equ., 2008, 2008: 1-20

[14]

Cuevas C, Pinto M. Convergent solutions of linear functional difference equations in phase space. J. Math. Anal. Appl., 2003, 277(1): 324-341

[15]

de Andrade B, Cuevas C. ${\cal S}$-asymptotically ω-periodic and asymptotically ω-periodic solutions to semi-linear Cauchy problems with non-dense domain. Nonlinear Anal., 2010, 72(6): 3190-3208

[16]

de Andrade B, Cuevas C, Silva C, Soto H. Asymptotic periodicity for flexible structural systems and applications. Acta. Appl. Math., 2016, 143(1): 105-164

[17]

Dimbour W, Mophou G, N’Guérékata G M. ${\cal S}$-asymptotically periodic solutions for partial differential equations with finite delay. Electron. J. Differential Equations, 2011, 2011(117): 1-12

[18]

Ding H S, Fu J D, N’Guérékata G M. Positive almost periodic type solutions to a class of nonlinear difference equations. Electron. J. Qual. Theory Differ. Equ., 2011, 25: 1-16

[19]

Elaydi S. An Introduction to Difference Equations, 2005, New York: Springer-Verlag

[20]

Gopalsamy K. Stability and Oscillations in Delay Differential Equations of Population Dynamics, 1992, Dordecht: Kluwer Academic

[21]

Granas A, Dugundji J. Fixed Point Theory, 2003, New York: Springer-Verlag

[22]

Henríquez H R, Cuevas C, Caicedo A. Asymptotically periodic solutions of neutral partial differential equations with infinite delay. Commun. Pure Appl. Anal., 2013, 12(5): 2031-2068

[23]

Henríquez H R, Pierri M, Rolnik V. Pseudo S-asymptotically periodic solutions of second-order abstract Cauchy problems. Appl. Math. Comput., 2016, 274: 590-603

[24]

Henríquez H R, Pierri M, Taboas P. Existence of ${\cal S}$-asymptotically ω-periodic solutions for abstract neutral functional-differential equations. Bull. Austral. Math. Soc., 2008, 78(3): 365-382

[25]

Henríquez H R, Pierri M, Táboas P. On ${\cal S}$-asymptotically ω-periodic functions on Banach spaces and applications. J. Math. Anal. Appl, 2008, 343(2): 1119-1130

[26]

Matkowski J. Integrable solutions of functional equations. Dissertationes Math., 1975, 127: 1-68

[27]

Pierri M. On ${\cal S}$-asymptotically ω-periodic functions and applications. Nonlinear Anal., 2012, 75(2): 651-661

[28]

Pierri M, Rolnik V. On pseudo ${\cal S}$-asymptotically periodic functions. Bull. Aust. Math. Soc., 2013, 87(2): 238-254

[29]

Song Y H. Asymptotically almost periodic solutions of nonlinear Volterra difference equations with unbounded delay. J. Difference Equ. Appl., 2008, 14(9): 971-986

[30]

Song Y H, Tian H J. Periodic and almost periodic solutions of nonlinear discrete Volterra equations with unbounded delay. J. Comput. Appl. Math., 2007, 205(2): 859-870

[31]

Wei F Y, Wang K. Global stability and asymptotically periodic solutions for nonautonomous cooperative Lotka-Volterra diffusion system. Appl. Math. Comput., 2006, 182(1): 161-165

[32]

Xia Z N. Pseudo asymptotically periodic solutions of two-term time fractional differential equations with delay. Kodai Math. J., 2015, 38(2): 310-332

[33]

Zeng Z J. Asymptotically periodic solution and optimal harvesting policy for Gompertz system. Nonlinear Anal. Real World Appl., 2011, 12(3): 1401-1409

AI Summary AI Mindmap
PDF

148

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/