Fast Growth Entire Functions Whose Escaping Set Has Hausdorff Dimension Two

Jie Ding , Jun Wang , Zhuan Ye

Chinese Annals of Mathematics, Series B ›› 2019, Vol. 40 ›› Issue (4) : 481 -494.

PDF
Chinese Annals of Mathematics, Series B ›› 2019, Vol. 40 ›› Issue (4) : 481 -494. DOI: 10.1007/s11401-019-0146-4
Article

Fast Growth Entire Functions Whose Escaping Set Has Hausdorff Dimension Two

Author information +
History +
PDF

Abstract

The authors study a family of transcendental entire functions which lie outside the Eremenko-Lyubich class in general and are of infinity growth order. Most importantly, the authors show that the intersection of Julia set and escaping set of these entire functions has full Hausdor. dimension. As a by-product of the result, the authors also obtain the Hausdor. measure of their escaping set is infinity.

Keywords

Dynamic systems / Entire function / Julia set / Escaping set / Hausdorff dimension

Cite this article

Download citation ▾
Jie Ding, Jun Wang, Zhuan Ye. Fast Growth Entire Functions Whose Escaping Set Has Hausdorff Dimension Two. Chinese Annals of Mathematics, Series B, 2019, 40(4): 481-494 DOI:10.1007/s11401-019-0146-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Barański K. Hausdorff dimension of hairs and ends for entire maps of finite order. Math. Proc. Camb. Phil. Soc., 2008, 145: 719-737

[2]

Beardon A F. Iteration of Rational Functions, 1991, Berlin: Spinger-Verlag

[3]

Bergweiler W. Iteration of meromorphic functions. Bull. Amer. Math. Soc. (N. S.), 1993, 29: 151-188

[4]

Bergweiler W. Lebesgue measure of Julia sets and escaping sets of certain entire functions. Fund. Math., 2018, 242: 281-301

[5]

Bergweiler W, Chyzhykov I. Lebesgue measure of escaping sets of entire functions of completely regular growth. J. London Math. Soc., 2016, 94(2): 639-661

[6]

Bergweiler W, Hinkkanen A. On semiconjugation of entire functions. Math. Pro. Camb. Phil. Soc., 1999, 126(3): 565-574

[7]

Bergweiler W, Karpinska B. On the Hausdorff dimension of the Julia set of a regularly growing entire function. Math. Pro. Camb. Phil. Soc., 2010, 148: 531-551

[8]

Bergweiler W, Karpinska B, Stallard G M. The growth rate of an entire function and the Hausdorff dimension of its Julia set. J. London Math. Soc., 2009, 80(2): 680-698

[9]

Eremenko A E. On the Iteration of Entire Functions, 1989, Warsaw: Banach Center Publ. 339-345

[10]

Eremenko A E, Lyubich M Yu. Dynamical properties of some classes of entire functions. Ann. Inst. Fourier, 1992, 42: 989-1020

[11]

Goldberg A A, Ostrovsikii I V. Value Distribution of Meromorphic Functions, 2008, Province, Rhode Island: Amer. Math. Soc.

[12]

Gundersen G. Finite order solutions of second order linear differential equations. Trans. Amer. Math. Soc., 1988, 305: 415-429

[13]

Hayman W K. Meromorphic Functions, 1964, Oxford, UK: Clarendon Press

[14]

McMullen C. Area and Hausdorff dimension of Julia sets of entire functions. Trans. Amer. Math. Soc., 1987, 300: 329-342

[15]

Milnor J. Dynamics in One Complex Variable, 1999, Braunschweig: Friedr. Vieweg & Sohn

[16]

Peter J. Hausdorff measure of Julia sets in the exponential family. J. London Math. Soc., 2010, 82(1): 229-255

[17]

Peter J. Hausdorff measure of escaping and Julia sets for bounded-type functions of finite order. Ergod. Th. & Dynam. Sys., 2013, 33(1): 284-302

[18]

Rippon P J, Stallard G M. Fast escaping points of entire functions. Pro. London Math. Soc., 2012, 105(4): 787-820

[19]

Schubert, H., Über die Hausdorff-Dimension der Juliamenge von Funktionen endlicher Ordnung, Dissertation, University of Kiel, 2007, http://eldiss.uni-kiel.de/macau/receive/dissertatiora_diss_00002124.

[20]

Sixsmith D. Functions of genus zero for which the fast escaping set has Hausdorff dimension two. Pro. Amer. Math. Soc., 2015, 143(6): 2597-2612

[21]

Stallard, G. M., Dimensions of Julia sets of transcendental meromorphic functions, Transcendental Dynamics and Complex Analysis, London Math. Soc. Lect. Note 348, Rippon, P. J. and Stallard, G. M.(eds.), Cambridge University Press, Cambridge, 2008, 425–446.

[22]

Taniguchi M. Size of the Julia set of structurally finite transcendental entire function. Math. Proc. Camb. Phil. Soc., 2003, 135: 181-192

[23]

Ye Z. On Nevnalinna’s error terms. Duke Math. J., 1991, 64(2): 243-260

[24]

Zheng J H. On multiply-connected Fatou components in iteration of meromorphic functions. J. Math. Anal. Appl., 2006, 313: 24-37

AI Summary AI Mindmap
PDF

208

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/