Ricci Positive Metrics on the Moment-Angle Manifolds

Liman Chen , Feifei Fan

Chinese Annals of Mathematics, Series B ›› 2019, Vol. 40 ›› Issue (3) : 469 -480.

PDF
Chinese Annals of Mathematics, Series B ›› 2019, Vol. 40 ›› Issue (3) : 469 -480. DOI: 10.1007/s11401-019-0145-5
Article

Ricci Positive Metrics on the Moment-Angle Manifolds

Author information +
History +
PDF

Abstract

In this paper, the authors consider the problem of which (generalized) moment-angle manifolds admit Ricci positive metrics. For a simple polytope P, the authors can cut off one vertex v of P to get another simple polytope P v, and prove that if the generalized moment-angle manifold corresponding to P admits a Ricci positive metric, the generalized moment-angle manifold corresponding to P v also admits a Ricci positive metric. For a special class of polytope called Fano polytopes, the authors prove that the moment-angle manifolds corresponding to Fano polytopes admit Ricci positive metrics. Finally some conjectures on this problem are given.

Keywords

Moment-Angle manifolds / Simple polytope / Cutting off face / Positive Ricci curvature / Fano polytope

Cite this article

Download citation ▾
Liman Chen, Feifei Fan. Ricci Positive Metrics on the Moment-Angle Manifolds. Chinese Annals of Mathematics, Series B, 2019, 40(3): 469-480 DOI:10.1007/s11401-019-0145-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bazaikin Y V, Matvienko I V. On the moment-angle manifolds of positive Ricci curvature. Siberian Mathematical Journal, 2011, 52(1): 11-22

[2]

Buchstaber V M, Panov T E. Torus actions and their applications in topology and combinatorics. University Lecture Series, 2002, Providence, RI: Amer. Math. Soc. 24

[3]

Chen, L., Fan, F. and Wang, X., The topology of the moment-angle manifolds-on a conjecture of S. Gitler and S. Lopez, 2014, arXiv: 1406.6756.

[4]

Cox D, Little J, Schenck H. Toric varieties, Graduate Studies in Mathematics, 2011, Providence, RI: Amer. Math. Soc. 124

[5]

Ehrlich P. Metric deformations of curvature. Geom. Dedicata, 1976, 5: 1-23

[6]

Gilkey P B, Park J, Tuschmann W. Invariant metrics of positive Ricci curvature on principal bundles. Math. Z., 1998, 227: 455-463

[7]

Gitler S, López de Medrano S. Intersections of quadrics, moment-angle manifolds and connected sums. Geom. Topol., 2013, 17(3): 1497-1534

[8]

Gromov M, Lawson H B. The clssification of simply connected manifolds of positive scalar curvature. Ann. Math., 1980, 111: 423-434

[9]

Gromov M, Lawson H B. Positive scalar curvature and the Dirac operator on complete Reimannian manifolds. Publ. Math. I.H.E.S, 1983, 58: 83-196

[10]

López de Medrano S, Verjovsky A. A new family of complex, compact, nonsymplectic manifolds. Bol. SOC. Brasil. Math., 1997, 28: 253-269

[11]

Meersseman L. A new geometric construction of compact complex manifolds in any dimension. Math. Ann., 2000, 317: 79-115

[12]

Meersseman L, Verjovsky A. Holomorphic principal bundles over projective toric varieties. J. Reine Angew. Math., 2004, 572: 57-96

[13]

Schoen R, Yau S T. On the structure of manifolds with positive scalar curvature. Manuscripta Mathematica, 1979, 28: 159-183

[14]

Schoen R, Yau S T. Existence of incomressible minimal surfaces and the topology of three dimensional manifolds with non-negative scalar curvature. Ann. Math., 1979, 110: 127-142

[15]

Sha J, Yang D. Positive Ricci curvature on the connected sums of S n × S m. J. Differential Geometry, 1991, 33: 127-137

[16]

Wiemeler, M., Every quasitorus manifold admits an invariant metric of positive scalar curvature, 2012, arXiv: 1202.0146.

[17]

Wraith D J. New connected sums with positive Ricci curvature. Ann. Glob. Anal. Geom., 2007, 32: 343-360

[18]

Yau S T. On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampére equation. I*, Commun. Pure Appl. Math., 1978, 31: 339-411

AI Summary AI Mindmap
PDF

137

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/