The Rigidity of Hypersurfaces in Euclidean Space

Chunhe Li , Yanyan Xu

Chinese Annals of Mathematics, Series B ›› 2019, Vol. 40 ›› Issue (3) : 439 -456.

PDF
Chinese Annals of Mathematics, Series B ›› 2019, Vol. 40 ›› Issue (3) : 439 -456. DOI: 10.1007/s11401-019-0143-7
Article

The Rigidity of Hypersurfaces in Euclidean Space

Author information +
History +
PDF

Abstract

In the present paper, the rigidity of hypersurfaces in Euclidean space is revisited. The Darboux equation is highlighted and two new proofs of the rigidity are given via energy method and maximal principle, respectively.

Keywords

Global rigidity / Infinitesimal rigidity / Energy method / Maximal principle

Cite this article

Download citation ▾
Chunhe Li, Yanyan Xu. The Rigidity of Hypersurfaces in Euclidean Space. Chinese Annals of Mathematics, Series B, 2019, 40(3): 439-456 DOI:10.1007/s11401-019-0143-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alexandrov A D. On a class of closed surfaces. Mat. Sb., 1938, 4: 69-77

[2]

Blaschke, W., Vorlesungen Uber Differentialgeometrie, 1, Julis Springer, Berlin, 1924.

[3]

Cohn-Vossen E. Unstarre geochlossene Flachen. Math. Annalen, 1930, 102: 10-29

[4]

Dajczer M, Rodriguez L L. Infinitesimal rigidity of Euclidean submanifolds. Ann. Inst. Four., 1990, 40(4): 939-949

[5]

Dong G C. The semi-global isometric imbedding in R 3 of two dimensional Riemannian manifolds with Gaussian curvature changing sign clearly. J. Partial Diff. Eqs., 1993, 1: 62-79

[6]

Gilbarg D, Trudinger N S. Elliptic Partial Differential Equations of the Second Order, 1998, Berlin: Springer-Verlag

[7]

Guan P, Shen X. A rigidity theorem for hypersurfaces in higher dimensional space forms. Contemporary Mathematics, 2015, 644: 61-65

[8]

Guan P, Wang Z, Zhang X. A proof of the Alexanderov’s uniqueness theorem for convex surface in ℝ3. Annales de l’Institut Henri Poincaré Analyse non linéaire, 2016, 33: 329-336

[9]

Han Q, Hong J. Isometric embedding of Riemannian manifolds in Euclidean spaces. Mathematical Surveys and Monographs, 2006, Providence, RI: Amer. Math. Soc. 130

[10]

Ivan I. Infinitesimal rigidity of convex polyhedra through the second derivative of the Hilbert-Einstein functional. Canadian Journal of Mathematics, 2014, 66(4): 783-825

[11]

Kobayashi, S., Transformation Groups in Differential Geometry, Classics in Mathematics, 70, Springer-Verlag, Berlin, Heidelberg, 1995.

[12]

Li, C. H., Miao, P. Z. and Wang, Z. Z., Uniqueness of isometric immersions with the same mean curvature, J. Funct. Anal., https://doi.org/10.1016/j.jfa.2018.06.021.

[13]

Li, C. H. and Wang, Z. Z., The Weyl problem in warped product space, J. Diff. Geom., arXiv: 1603.01350v2.

[14]

Lin C-Y, Wang Y-K. On isometric embeddings into anti-de sitter spacetimes. Int. Math. Res. Notices, 2015, 16: 7130-7161

[15]

Yau, S. T., Lecture on Differential Geometry, in Berkeley, 1994.

AI Summary AI Mindmap
PDF

105

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/