A Nekhoroshev Type Theorem for the Nonlinear Wave Equation in Gevrey Space

Chunyong Liu , Huayong Liu , Rong Zhao

Chinese Annals of Mathematics, Series B ›› 2019, Vol. 40 ›› Issue (3) : 389 -410.

PDF
Chinese Annals of Mathematics, Series B ›› 2019, Vol. 40 ›› Issue (3) : 389 -410. DOI: 10.1007/s11401-019-0140-x
Article

A Nekhoroshev Type Theorem for the Nonlinear Wave Equation in Gevrey Space

Author information +
History +
PDF

Abstract

In this paper, the authors prove a Nekhoroshev type theorem for the nonlinear wave equation ${u_{tt}} = {u_{xx}} - mu - f(u),\;\;\;\;\;x \in [0,\pi ]$ in Gevrey space.

Keywords

Gevrey space / Nonlinear wave equation / Normal form / Stability

Cite this article

Download citation ▾
Chunyong Liu, Huayong Liu, Rong Zhao. A Nekhoroshev Type Theorem for the Nonlinear Wave Equation in Gevrey Space. Chinese Annals of Mathematics, Series B, 2019, 40(3): 389-410 DOI:10.1007/s11401-019-0140-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bambusi D. On long time stability in Hamiltonian perturbations of non-resonant linear PDEs. Nonlinearity, 1999, 12: 823-850

[2]

Bambusi D. Nekhoroshev theorem for small amplitude solutions in nonlinear Schrödinger equations. Math. Z., 1999, 230: 345-387

[3]

Bambusi D. Birkhoff normal form for some nonlinear PDEs. Comm. Math. Phy., 2003, 234: 253-285

[4]

Bambusi, D., A Birkhoff normal form theorem for some semilinear PDEs, Hamiltonian dynamical systems and applications, 2008, 213–247.

[5]

Bambusi D, Berti M, Magistrelli E. Degenerate KAM theory for partial differential equations. J. Diff. Eqs., 2011, 250: 3379-3397

[6]

Bambusi D, Grébert B. Birkhoff normal form for partial differential equations with tame modulus. Duke Math. J., 2006, 135: 507-567

[7]

Bambusi D, Nekhoroshev N N. A property of exponential stability in nonlinear wave equations near the fundamental linear mode. Phys. D., 1998, 122: 73-104

[8]

Benettin G, Galgani L, Giorgilli A. A proof of Nekhoroshev’s theorem for the stability times in nearly integrable Hamiltonian systems. Celestial Mech., 1985, 37: 1-25

[9]

Bounemoura A. Nekhoroshev estimates for finitely differentiable quasi-convex Hamiltonians. J. Diff. Eqs., 2000, 249: 2905-2920

[10]

Bounemoura A. Normal forms, stability and splitting of invariant manifolds I, Gevrey Hamiltonians. Regular and Chaotic Dynamics, 2013, 18: 237-260

[11]

Bourgain J. Construction of approximative and almost periodic solutions of perturbed linear Schrödinger and wave equations. Gemo. Funct. Anal., 1996, 6: 201-230

[12]

Bourgain J. Remarks on stability and diffusion in high-dimensional Hamiltonian systems and partial differential equations. Ergodic Theory and Dynamical Systems, 2004, 24(5): 1331-1357

[13]

Cong H, Gao M, Liu J. Long time stability of KAM tori for nonlinear wave equation. J. Diff. Eqs., 2015, 258: 2823-2846

[14]

Cong H, Liu J, Yuan X. Stability of KAM tori for nonlinear Schrödinger equation. Mem. Amer. Math. Soc., 2016, 239(1134): 1-85

[15]

Faou E, Grébert B. A Nekhoroshev-type theorem for the nonlinear Schrödinger equation on the torus. Analysis and PDE., 2013, 6: 1243-1262

[16]

Kuksin S B. Hamiltonian perturbations of infinite-dimensional linear systems with an imaginary spectrum. Funct. Anal. Appl., 1987, 21: 192-205

[17]

Kuksin S B. Perturbations of quasiperiodic solutions of infinite-dimensional Hamiltonian systems. Math. USSR Izv., 1989, 32: 39-62

[18]

Kuksin S B. Nearly Integrable Infinite-Dimensional Hamiltonian Systems, 1993, Berlin: Springer-Verlag

[19]

Marco J P, Sauzin D. Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian systems. Publications Mathématiques de l′IHÉS, 2003, 96: 199-275

[20]

Mi, L., Liu, C., Shi, G. and Zhao, R., A Nekhoroshev type theorem for the nonlinear wave equation, Pure and Applied Mathematics Quarterly, preprint.

[21]

Popov G. KAM theorem for Gevrey Hamiltonians. Ergodic Theory Dynam. Systems, 2004, 24: 1753-1786

[22]

Pöschel J. Quasi-periodic solutions for nonlinear wave equation. Comm. Math. Helv., 1996, 71: 269-296

[23]

Wayne C E. Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory. Comm. Math. Phys., 1990, 127: 479-528

[24]

Xu J, You J, Qiu Q. Invariant tori for nearly integrable Hamtonian systems with degenercy. Math. Z., 1997, 226: 375-387

[25]

Yuan X. Quasi-periodic solutions of nonlinear wave equations with a prescribed potential. Discrete Contin. Dyn. Syst., 2006, 16: 615-634

[26]

Yuan X. Quasi-periodic solutions of completely resonant nonlinear wave equations. J. Diff. Eqs., 2006, 230: 213-274

AI Summary AI Mindmap
PDF

116

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/