Convergence of Solutions of General Dispersive Equations Along Curve

Yong Ding , Yaoming Niu

Chinese Annals of Mathematics, Series B ›› 2019, Vol. 40 ›› Issue (3) : 363 -388.

PDF
Chinese Annals of Mathematics, Series B ›› 2019, Vol. 40 ›› Issue (3) : 363 -388. DOI: 10.1007/s11401-019-0139-3
Article

Convergence of Solutions of General Dispersive Equations Along Curve

Author information +
History +
PDF

Abstract

In this paper, the authors give the local L 2 estimate of the maximal operator$S_{\phi ,\gamma }^ * $ of the operator family {S t,ϕ, γ} defined initially by${S_{t,\phi ,\gamma }}f(x): = {{\rm{e}}^{{\rm{i}}\,t\phi (\sqrt { - \Delta } )}}f(\gamma (x,t)) = {(2\pi )^{ - 1}}\int_\mathbb{R} {{{\rm{e}}^{{\rm{i}}\gamma (x,t) \cdot \xi + {\rm{i}}\,t\phi ({\rm{|}}\xi {\rm{|}})}}} \hat f(\xi ){\rm{d}}\xi ,\;\;\;\;\;\;\;\;f \in {\cal S}(\mathbb{R}),$ which is the solution (when {itn} = 1) of the following dispersive equations (*) along a curve {itγ}: $\left\{ {\matrix{ {{\rm{i}}{\partial _t}u + \phi (\sqrt { - {\rm{\Delta }}} )u = 0,} \hfill \;\;\;\;\; {(x,t) \in \mathbb{R}{^n} \times \mathbb{R},} \hfill \cr {u(x,0) = f(x),} \hfill \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; {f \in {\cal S}({\mathbb{R}^n}),} \hfill \cr } } \right.$ where {itϕ}: ℝ+ → ℝ satisfies some suitable conditions and$\phi (\sqrt { - {\rm{\Delta }}} )$ is a pseudo-differential operator with symbol {itϕ}(∣{itξ}∣). As a consequence of the above result, the authors give the pointwise convergence of the solution (when {itn} = 1) of the equation (*) along curve {itγ}. Moreover, a global {itL}2 estimate of the maximal operator$S_{\phi ,\gamma }^ * $ is also given in this paper.

Keywords

L 2 estimate / Global maximal operator / Dispersive equation / Curve

Cite this article

Download citation ▾
Yong Ding, Yaoming Niu. Convergence of Solutions of General Dispersive Equations Along Curve. Chinese Annals of Mathematics, Series B, 2019, 40(3): 363-388 DOI:10.1007/s11401-019-0139-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bourgain J. On the Schrödinger maximal functionin higher dimension. Proc. Steklov Inst. Math., 2013, 280: 46-60

[2]

Carleson L. Some analytical problems related to statistical mechanics, Euclidean Harmonic Analysis. Lecture Notes in Math., 1979, Berlin, New York: Springer-Verlag 5-45 779

[3]

Cho C, Lee S, Vargas A. Problems on pointwise convergence of solutions to the Schrödinger equation. J. Fourier Anal. Appl., 2012, 18(5): 972-994

[4]

Cho Y, Lee S. Strichartz estimates in spherical coordinates. Indiana Univ. Math. J., 2013, 62(3): 991-1020

[5]

Cho Y, Ozawa T. On small amplitude solutions to the generalized Boussinesq equations. Discrete Contin. Dyn. Syst., 2007, 17(17): 691-711

[6]

Dahlberg B, Kenig C. A note on the almost everywhere behaviour of solutions to the Schrödinger equation, in Harmonic analysis. Lecture Notes in Math., 1982, Berlin: Springer-Verlag 205-209 908

[7]

Ding Y, Niu Y M. Weighted maximal estimates along curve associated with dispersive equations. Anal Appl., 2017, 15(2): 225-240

[8]

Frölich J, Lenzmann E. Mean-Field limit of quantum Bose gases and nonlinear Hartree equation. Sémin. Equ. Dériv. Partielles, 2004, 19: 1-26

[9]

Guo Z H, Peng L Z, Wang B X. Decay estimates for a class of wave equations. J. Funct. Anal., 2008, 254(6): 1642-1660

[10]

Guo Z H, Wang Y Z. Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrödinger and wave equations. J. Anal. Math., 2014, 124(1): 1-38

[11]

Krieger J, Lenzmann E, Raphaël P. Nondispersive solutions to the L 2-critical half-wave equation. Arch. Rational Mech. Anal., 2013, 209(1): 61-129

[12]

Laskin N. Fractional quantum mechanics. Phys. R. E., 2002, 62: 3135-3145

[13]

Lee S. On pointwise convergence of the solutions to Schrödinger equations in ℝ2. Int. Math. Res. Not., 2006, 2006: 1-21 Art.ID 32597

[14]

Lee S, Rogers K. The Schrödinger equation along curves and the quantum harmonic oscillator. Adv.Math., 2012, 229(3): 1359-1379

[15]

Miao C X, Yang J W, Zheng J Q. An improved maximal inequality for 2D fractional order Schrödinger operators. Studia Math., 2015, 230(2): 121-165

[16]

Muckenhoupt B. Weighted norm inequalities for the Fourier transform. Trans. Amer. Math. Soc., 1983, 276(2): 729-742

[17]

Sjögren P, Sjölin P. Convergence properties for the time dependent Schrödinger equation. Ann. Acad. Sci. Fenn. Math., 1989, 14(1): 13-25

[18]

Sjölin P. Convolution with oscillating kernels. Indiana Univ. Math. J., 1981, 30(1): 47-55

[19]

Sjölin P. Regularity of Solutions to the Schrödinger Equation. Duke Math. J., 1987, 55(3): 699-715

[20]

Sjölin P. Global maximal estimates for solutions to the Schrödinger Equation. Studia Math., 1994, 110(2): 105-114

[21]

Stein E M. Introduction to Fourier Analysis on Euclidean Spaces, 1971, Princeton: Princeton Univ. Press

[22]

Stein E M. Oscillatory integrals in Fourier analysis, Beijing Lectures in Harmonic Analysis. Ann. of Math. Stud., 1986, Pinceton: Princeton Univ. Press 307-355 112

[23]

Tao T. A sharp bilinear restrictions estimate for paraboloids. Geom. Fund. Anal., 2003, 13(6): 1359-1384

[24]

Taylor, M., Pseudodifferential Operators and Nonlinear PDE, Birkhauser, Boston, 1991.

[25]

Vega L. Schrödinger equations: Pointwise convergence to the initial data. Proc. Amer. Math. Soc., 1988, 102(4): 874-878

AI Summary AI Mindmap
PDF

116

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/