Convergence of Solutions of General Dispersive Equations Along Curve
Yong Ding , Yaoming Niu
Chinese Annals of Mathematics, Series B ›› 2019, Vol. 40 ›› Issue (3) : 363 -388.
Convergence of Solutions of General Dispersive Equations Along Curve
In this paper, the authors give the local L 2 estimate of the maximal operator$S_{\phi ,\gamma }^ * $ of the operator family {S t,ϕ, γ} defined initially by${S_{t,\phi ,\gamma }}f(x): = {{\rm{e}}^{{\rm{i}}\,t\phi (\sqrt { - \Delta } )}}f(\gamma (x,t)) = {(2\pi )^{ - 1}}\int_\mathbb{R} {{{\rm{e}}^{{\rm{i}}\gamma (x,t) \cdot \xi + {\rm{i}}\,t\phi ({\rm{|}}\xi {\rm{|}})}}} \hat f(\xi ){\rm{d}}\xi ,\;\;\;\;\;\;\;\;f \in {\cal S}(\mathbb{R}),$ which is the solution (when {itn} = 1) of the following dispersive equations (*) along a curve {itγ}: $\left\{ {\matrix{ {{\rm{i}}{\partial _t}u + \phi (\sqrt { - {\rm{\Delta }}} )u = 0,} \hfill \;\;\;\;\; {(x,t) \in \mathbb{R}{^n} \times \mathbb{R},} \hfill \cr {u(x,0) = f(x),} \hfill \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; {f \in {\cal S}({\mathbb{R}^n}),} \hfill \cr } } \right.$ where {itϕ}: ℝ+ → ℝ satisfies some suitable conditions and$\phi (\sqrt { - {\rm{\Delta }}} )$ is a pseudo-differential operator with symbol {itϕ}(∣{itξ}∣). As a consequence of the above result, the authors give the pointwise convergence of the solution (when {itn} = 1) of the equation (*) along curve {itγ}. Moreover, a global {itL}2 estimate of the maximal operator$S_{\phi ,\gamma }^ * $ is also given in this paper.
L 2 estimate / Global maximal operator / Dispersive equation / Curve
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
Taylor, M., Pseudodifferential Operators and Nonlinear PDE, Birkhauser, Boston, 1991. |
| [25] |
|
/
| 〈 |
|
〉 |