Carleson Measures and Toeplitz Operators on Doubling Fock Spaces

Xiaofen Lv

Chinese Annals of Mathematics, Series B ›› 2019, Vol. 40 ›› Issue (3) : 349 -362.

PDF
Chinese Annals of Mathematics, Series B ›› 2019, Vol. 40 ›› Issue (3) : 349 -362. DOI: 10.1007/s11401-019-0138-4
Article

Carleson Measures and Toeplitz Operators on Doubling Fock Spaces

Author information +
History +
PDF

Abstract

Given ϕ a subharmonic function on the complex plane ℂ, with ΔϕdA being a doubling measure, the author studies Fock Carleson measures and some characterizations on μ such that the induced positive Toeplitz operator T μ is bounded or compact between the doubling Fock space $F_\phi ^p$ and $F_\phi ^\infty $ with 0 < p ≤ ∞, where μ is a positive Borel measure on ℂ.

Keywords

Doubling Fock spaces / Carleson measure / Toeplitz operators

Cite this article

Download citation ▾
Xiaofen Lv. Carleson Measures and Toeplitz Operators on Doubling Fock Spaces. Chinese Annals of Mathematics, Series B, 2019, 40(3): 349-362 DOI:10.1007/s11401-019-0138-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bauer W, Coburn L, Isralowitz J. Heat flow, BMO, and the compactness of Toeplitz operators. J. Fund. Anal., 2010, 259: 57-78

[2]

Cho H R, Choe B R, Koo H. Combinations of composition operators on the Fock-Sobolev spaces. Potential Anal., 2014, 41(4): 1223-1246

[3]

Cho H R, Choe B R, Koo H. Fock-Sobolev spaces of fractional order. Potential Anal., 2015, 43: 199-240

[4]

Choe H, Zhu K H. Fock-Sobolev spaces and their Carleson measures. J. Funct. Anal., 2012, 263: 2483-2506

[5]

Christ M. On the $⩈erline ¶rtial $ equation in weighted L 2 norms in ℂ1. J. Geom. Anal., 1991, 1(3): 193-230

[6]

Coburn L, Isralowitz J, Li B. Toeplitz operators with BMO symbols on the Segal-Bargmann space. Trans. Amer. Math. Soc., 2011, 363(6): 3015-3030

[7]

Constantin O, Ortega-Cerdà J. Some spectral properties of the canonical solution operator to $⩈erline ¶rtial $ on weighted Fock spaces. J. Math. Anal. Appl., 2011, 377(1): 353-361

[8]

Constantin O, Peláez J. Integral operators, embedding theorems and a Littlewood-Paley formula on weighted Fock spaces. J. Geom. Anal., 2016, 26(2): 1109-1154

[9]

Hu Z J, Lv X F. Toeplitz operators from one Fock space to another. Integr. Equ. Oper. Theory, 2011, 70: 541-559

[10]

Hu Z J, Lv X F. Toeplitz operators on Fock spaces F p(ϕ). Integr. Equ. Oper. Theory, 2014, 80(1): 33-59

[11]

Hu Z J, Lv X F. Hankel operators on weighted Fock spaces. Sci. China (Math.), 2016, 46(2): 141-156

[12]

Hu Z J, Lv X F. Positive Toeplitz operators between different weighted Fock spaces. Taiwanese J. Math., 2017, 21(2): 467-487

[13]

Isralowitz J, Zhu K H. Toeplitz operators on the Fock space. Integr. Equ. Oper. Theory, 2010, 66(4): 593-611

[14]

Lu J, Lv X F. Toeplitz operators between Fock spaces. Bull. Austr. Math. Soc., 2015, 92: 316-324

[15]

Marco N, Massaneda X, Ortega-Cerdà J. Interpolating and sampling sequences for entire functions. Geom. Funct. Anal., 2003, 13(4): 862-914

[16]

Marzo J, Ortega-Cerdà J. Pointwise estimates for the Bergman kernel of the weighted Fock space. J. Geom. Anal., 2009, 19: 890-910

[17]

Mengestie T. Carleson type measures for Fock-Sobolev spaces. Complex Anal. Oper. Theory, 2014, 8(6): 1225-1256

[18]

Mengestie T. On Toeplitz operators between Fock spaces. Integr. Equ. Oper. Theory, 2014, 78: 213-224

[19]

Oliver R, Pascuas D. Toeplitz operators on doubling Fock spaces. J. Math. Anal. Appl., 2016, 435(2): 1426-1457

[20]

Schneider G, Schneider K. Generalized Hankel operators on the Fock space. Math. Nachr., 2009, 282(12): 1811-1826

[21]

Schneider G, Schneider K. Generalized Hankel operators on the Fock space II. Math. Nachr., 2011, 284(14–15): 1967-1984

[22]

Schuster A, Varolin D. Toeplitz operators and Carleson measures on generalized Bargman-Fock spaces. Integr. Equ. Oper. Theory, 2012, 72(3): 363-392

[23]

Wang X F, Cao G F, Xia J. Toeplitz operators on Fock-Sobolev spaces with positive measure symbols. Sci. China (Math.), 2014, 44(3): 263-274

[24]

Zhu K H. Analysis on Fock Spaces. Graduate Texts in Mathematics, 2012, New York: Springer-Verlag 263

AI Summary AI Mindmap
PDF

146

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/