Problems of Lifts in Symplectic Geometry

Arif Salimov , Manouchehr Behboudi Asl , Sevil Kazimova

Chinese Annals of Mathematics, Series B ›› 2019, Vol. 40 ›› Issue (3) : 321 -330.

PDF
Chinese Annals of Mathematics, Series B ›› 2019, Vol. 40 ›› Issue (3) : 321 -330. DOI: 10.1007/s11401-019-0135-7
Article

Problems of Lifts in Symplectic Geometry

Author information +
History +
PDF

Abstract

Let (M,ω) be a symplectic manifold. In this paper, the authors consider the notions of musical (bemolle and diesis) isomorphisms ω b: TMT*M and ω #: T*MTM between tangent and cotangent bundles. The authors prove that the complete lifts of symplectic vector field to tangent and cotangent bundles is ω b-related. As consequence of analyze of connections between the complete lift c ω TM of symplectic 2-form ω to tangent bundle and the natural symplectic 2-form dp on cotangent bundle, the authors proved that dp is a pullback of c ω TM by ω #. Also, the authors investigate the complete lift cϕ T*M of almost complex structure ϕ to cotangent bundle and prove that it is a transform by of complete lift c ϕ TM to tangent bundle if the triple (M, ω,ϕ) is an almost holomorphic $<mi xmlns:xlink="http://www.w3.org/1999/xlink" mathvariant="fraktur">A</mi>$-manifold. The transform of complete lifts of vector-valued 2-form is also studied.

Keywords

Symplectic manifold / Tangent bundle / Cotangent bundle / Transform of tensor fields / Pullback / Pure tensor / Holomorphic manifold

Cite this article

Download citation ▾
Arif Salimov, Manouchehr Behboudi Asl, Sevil Kazimova. Problems of Lifts in Symplectic Geometry. Chinese Annals of Mathematics, Series B, 2019, 40(3): 321-330 DOI:10.1007/s11401-019-0135-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bejan C-L, Druta-Romaniuc S-L. Connections which are harmonic with respect to general natural metrics. Differential Geom. Appl, 2012, 30(4): 306-317

[2]

Bejan C-L, Kowalski O. On some differential operators on natural Riemann extensions. Ann. Global Anal. Geom., 2015, 48(2): 171-180

[3]

Cakan R, Akbulut K, Salimov A. Musical isomorphisms and problems of lifts. Chin. Ann. Math. Ser. B, 2016, 37(3): 323-330

[4]

Druta-Romaniuc S-L. Natural diagonal Riemannian almost product and para-Hermitian cotangent bundles. Czechoslovak Math. J., 2012, 62(4): 937-949

[5]

Etayo F, Santamaría R. (J2 = ±1) -metric manifolds. Publ. Math. Debrecen, 2000, 57(3–4): 435-444

[6]

Norden A P. On a class of four-dimensional A-spaces. Izv. Vyssh. Uchebn. Zaved. Matematika, 1960, 17(4): 145-157

[7]

Oproiu V, Papaghiuc N. Some classes of almost anti-Hermitian structures on the tangent bundle. Mediterr. J. Math., 2004, 1(3): 269-282

[8]

Oproiu V, Papaghiuc N. An anti-Kählerian Einstein structure on the tangent bundle of a space form. Colloq. Math., 2005, 103(1): 41-46

[9]

Salimov A. Almost ψ-holomorphic tensors and their properties. Doklady Akademii Nauk, 1992, 324(3): 533-536

[10]

Salimov A. On operators associated with tensor fields. J. Geom., 2010, 99(1–2): 107-145

[11]

Salimov A. Tensor Operators and Their Applications. Mathematics Research Developments Series, 2013, New York: Nova Science Publishers

[12]

Salimov A. On anti-Hermitian metric connections. C. R. Math. Acad. Sci. Paris, 2014, 352(9): 731-735

[13]

Salimov A, Cakan R. Problems of g-lifts. Proc. Inst. Math. Mech., 2017, 43(1): 161-170

[14]

Salimov A, Iscan M. Some properties of Norden-Walker metrics. Kodai Math. J., 2010, 33(2): 283-293

[15]

Tachibana S. Analytic tensor and its generalization. Tohoku Math. J., 1960, 12: 208-221

[16]

Vishnevskii V V, Shirokov A P, Shurygin V V. Spaces Over Algebras, 1985, Kazan: Kazanskii Gosudarstvennii Universitet

[17]

Yano K, Ako M. On certain operators associated with tensor fields. Kodai Math. Sem. Rep., 1968, 20: 414-436

[18]

Yano K, Ishihara S. Tangent and Cotangent Bundles: Differential Geometry, 1973, New York: Marcel Dekker

AI Summary AI Mindmap
PDF

104

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/