Nonexistence of Type II Blowup for Heat Equation with Exponential Nonlinearity

Ruihong Ji , Shan Li , Hui Chen

Chinese Annals of Mathematics, Series B ›› 2019, Vol. 40 ›› Issue (2) : 309 -320.

PDF
Chinese Annals of Mathematics, Series B ›› 2019, Vol. 40 ›› Issue (2) : 309 -320. DOI: 10.1007/s11401-019-0134-8
Article

Nonexistence of Type II Blowup for Heat Equation with Exponential Nonlinearity

Author information +
History +
PDF

Abstract

This paper deals with the blowup behavior of the radially symmetric solution of the nonlinear heat equation u t = Δu + e u in ℝ N. The authors show the nonexistence of type II blowup under radial symmetric case in the lower supercritical range 3 ≤ N ≤ 9, and give a sufficient condition for the occurrence of type I blowup. The result extends that of Fila and Pulkkinen (2008) in a finite ball to the whole space.

Keywords

Nonlinear heat equation / Type II blowup / Exponential nonlinearity

Cite this article

Download citation ▾
Ruihong Ji, Shan Li, Hui Chen. Nonexistence of Type II Blowup for Heat Equation with Exponential Nonlinearity. Chinese Annals of Mathematics, Series B, 2019, 40(2): 309-320 DOI:10.1007/s11401-019-0134-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bebernes J., Eberly D.. Mathematical Problems from Combustion Theory. Applied Mathematical Sciences, 1989, New York: Springer-Verlag

[2]

Chen X. Y., Poláçik P.. Asymptotic periodicity of positive solutions of reaction diffusion equations on a ball. J. Reine Angew. Math., 1996, 472: 17-51

[3]

Escauriaza L., Seregin G., Śverák V.. Backward uniqueness for parabolic equations. Arch. Ration. Mech. Anal., 2003, 169: 147-157

[4]

Fila M.. Blowup Solutions of Supercritical Parabolic Equations, 2005, Amsterdam: Elsevier 105-158

[5]

Fila M., Pulkkinen A.. Nonconstant selfsimilar blowup profile for the exponential reaction-diffusion equation. Tohoku Math. J., 2008, 60: 303-328

[6]

Friedman A., McLeod J. B.. Blowup of positive solutions of semilinear heat equations. Indiana Univ. Math. J., 1985, 34: 425-447

[7]

Galaktionov V. A., Vázquez J. L.. The problem of blowup in nonlinear parabolic equations. Disc. Contin. Dyn. Systems, 2002, 8(2): 399-433

[8]

Gel’fand I. M.. Some problems in the theory of quasilinear equations. Amer. Math. Soc. Transl., 1963, 29(2): 295-381

[9]

Giga Y., Matsui S., Sasayama S.. On blowup rate for sign-changing solutions in a convex domain. Math. Meth. Appl. Sci., 2004, 27: 1771-1782

[10]

Giga Y., Matsui S., Sasayama S.. Blowup rate for semilinear heat equation with subcritical nonlinearity. Indiana Univ. Math. J., 2004, 53: 483-514

[11]

Herrero M. A., Vázquez J. L.. Explosion de solutions des équations paraboliques semilinéaires supercritiques, C. R. Acad. Sci. Paris. Sér. I Math., 1994, 319: 141-145

[12]

Herrero, M. A. and V´azquez, J. L., A blowup result for semilinear heat equations in the supercritical case, preprint.

[13]

Joseph D. D., Lundgren T. S.. Quasilinear Dirichlet problems driven by positive sources. Arch. Ration. Mech. Anal., 1973, 49: 241-269

[14]

Kazdan J. L., Warner F. W.. Curvature functions for compact 2-manifolds. Ann. Math., 1974, 99: 14-47

[15]

Lacey A. A.. Global, unbouded solutions to a parabolic equation. J. Differential Equations, 1993, 101: 80-102

[16]

Matano H.. Blowup in nonlinear heat equations with supercritical power nonlinearity. Contem. Math., 2007, 446: 385-412

[17]

Matano H., Merle F.. On non-existence of type II blow up for a supercritical nonlinear heat equation. Comm. Pure Appl. Math., 2004, 57: 1494-1541

[18]

Matano H., Merle F.. Classification of type I and type II behaviors for a supercritical nonlinear heat equation. J. Func. Anal., 2009, 256: 992-1064

[19]

Mizoguchi N.. Type II blowup for a semilinear heat equation. Adv. Diff. Equ., 2004, 9: 1279-1316

[20]

Mizoguchi N.. Blowup behavior of solutions for a semilinear heat equation with supercritical nonlinearity. J. Differential Equations, 2004, 205: 298-328

[21]

Mizoguchi N.. Boundedness of global solutions for a semilinear heat equation with supercritical nonlinearity. Indiana Univ. Math. J., 2005, 54(4): 1047-1059

[22]

Mizoguchi N.. Nonexistence of type II blowup solution for a semilinear heat equation. J. Differential Equations, 2011, 250: 26-32

[23]

Peral I., Vázquez J. L.. On the stability or instability of the singular solution of the semilinear heat equation with exponential reaction term. Arch. Rat. Mech. Anal., 1995, 129: 201-224

[24]

Samarskii A. A., Galaktionov V. A., Kurdyumov S. P., Mikhailov A. P.. Blowup in Quasilinear Parabolic Equations, 1995, Berlin, New York: Walter de Gruyter

AI Summary AI Mindmap
PDF

146

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/