On Uniform Large Deviations Principle for Multi-valued SDEs via the Viscosity Solution Approach

Jiagang Ren , Jing Wu

Chinese Annals of Mathematics, Series B ›› 2019, Vol. 40 ›› Issue (2) : 285 -308.

PDF
Chinese Annals of Mathematics, Series B ›› 2019, Vol. 40 ›› Issue (2) : 285 -308. DOI: 10.1007/s11401-019-0133-9
Article

On Uniform Large Deviations Principle for Multi-valued SDEs via the Viscosity Solution Approach

Author information +
History +
PDF

Abstract

This paper deals with the uniform large deviations for multivalued stochastic differential equations (MSDEs for short) by applying a stability result of the viscosity solutions of second order Hamilton-Jacobi-Belleman equations with multivalued operators. Moreover, the large deviation principle is uniform in time and in starting point.

Keywords

Multivalued stochastic differential equation / Large deviation principle / Viscosity solution / Exponential tightness / Laplace limit

Cite this article

Download citation ▾
Jiagang Ren, Jing Wu. On Uniform Large Deviations Principle for Multi-valued SDEs via the Viscosity Solution Approach. Chinese Annals of Mathematics, Series B, 2019, 40(2): 285-308 DOI:10.1007/s11401-019-0133-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cépa E.. Probleme de Skorohod multivoque. Ann. Prob., 1998, 26(2): 500-532

[2]

Zălinescu A.. Second order Hamilton-Jacobi-Bellman equations with unbounded operator, Nonlinear Analysis. TMA, 2012, 75: 4784-4797

[3]

Ren J., Wu J., Zhang H.. General large deviations and functional iterated logarithm law for multivalued stochastic differential equations. J. Theoret. Probab., 2015, 28(2): 550-586

[4]

Ren J., Xu S., Zhang X.. Large deviation for multivalued stochastic differenital equations. J. Theoretical Prob., 2010, 23(4): 1142-1156

[5]

Evans L. C., Ishii H.. A PDE approach to some asymptotic problems concerning random differential equations with small noise intensities. Ann. Inst. H. Poincaré Anal. Non Linéaire, 1985, 2(1): 1-20

[6]

Feng J., Kurtz T.. Large Deviations for Stochastic Processes, Mathematical Surveys and Monographs, 2006, Providence, RI: American Mathematical Society

[7]

Kobylanski M.. Large deviations principle by viscosity solutions: The case of diffusions with oblique Lipschitz reflections, Ann. Inst. H. Poincaré. Probab. Statist., 2013, 49(1): 160-181

[8]

Puhalskii A.. Sazonov V., Shervashidze T.. On functional principle of large deviations. New Trends in Probability and Statistics, 1991, Vilnius: VSP/Moks’las 198-219

[9]

Puhalskii A.. The method of stochastic exponentials for large deviations. Stoch. Proc. Appl., 1994, 54: 45-70

[10]

Puhlaskii A.. Large Deviations and Idempotent Probability, 2001, New York: Chapman and Hall/CRC

[11]

Święch A.. A PDE approach to large devaitons in Hilbert spaces. Stoch. Proc. Appl., 2009, 119: 1081-1123

[12]

Feng J.. Large deviations for diffusions and Hamilton-Jacobi equations in Hilbert spaces. Ann. Probab., 2006, 34(1): 321-385

[13]

Brézis H.. Opérateurs Maximaux Monotones, 1973, Amsterdam, London: North-Holland

[14]

Cardaliaguet, P., Solutions de viscosité d’équations elliptiques et paraboliques non linéaires, https://doi.org/www.ann.jussieu.fr/frey/papers/levelsets/.

[15]

Tataru D.. Viscosity solutions for the dynamic programming equations. Appl. Math. Optim., 1992, 25(2): 109-126

[16]

Dupuis P., Ellis R. S.. A Weak Convergence Approach to the Theory of Large Deviations, 1997, New York: Wiley

[17]

Friedman A.. Stochastic Diffrential Equations and Applications, 2006, Mineola, New York: Dover Publ.

[18]

Dembo A., Zeitouni O.. Large Deviations Techniques and Applications, 1998, New York: Springer-Verlag

[19]

Revuz D., Yor M.. Continuous Martingales and Brownian Motion, Grundlehren der Mathematischen Wissenschaften, 1999, Berlin: Springer-Verlag

[20]

Crandall M. G., Ishii H., Lions P. L.. User’s guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc., 1992, 27: 1-67

AI Summary AI Mindmap
PDF

144

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/