Waring-Goldbach Problem: One Square and Nine Biquadrates

Xiaodong Lü , Yingchun Cai

Chinese Annals of Mathematics, Series B ›› 2019, Vol. 40 ›› Issue (2) : 273 -284.

PDF
Chinese Annals of Mathematics, Series B ›› 2019, Vol. 40 ›› Issue (2) : 273 -284. DOI: 10.1007/s11401-019-0132-x
Article

Waring-Goldbach Problem: One Square and Nine Biquadrates

Author information +
History +
PDF

Abstract

In this paper it is proved that every sufficiently large even integer N satisfying one of the congruence conditions N ≡ 10, 58, 130, or 178 (mod 240) may be represented as the sum of one square and nine fourth powers of prime numbers.

Keywords

Waring-Goldbach problem / Hardy-Littlewood method

Cite this article

Download citation ▾
Xiaodong Lü, Yingchun Cai. Waring-Goldbach Problem: One Square and Nine Biquadrates. Chinese Annals of Mathematics, Series B, 2019, 40(2): 273-284 DOI:10.1007/s11401-019-0132-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Brüdern J.. Sums of squares and higher powers. J. London Math. Soc., 1987, 35(2): 233-243

[2]

Brüdern J., Kawada K.. The asymptotic formula in Waring’s problem for one square and seventeen fifth powers. Monatshefte fr Mathematik, 2011, 162(4): 385-407

[3]

Hardy G. H., Littlewood J. E.. Some problems of “Partitio Numerorum”, I, a new solution to Warings problem. Göttinger Nachrichten, 1920 33-54

[4]

Hardy G. H., Littlewood J. E.. Some problems of “Partitio Numerorum”, VI, further researches in Warings problem. Math. Z., 1925, 23: 1-37

[5]

Hua L. K.. Additive Theory of Prime Numbers, 1965

[6]

Hooley C.. On a new approach to various problems of Waring’s type, Recent Progress in Analytic Number Theory, 1981, London, New York: Academic Press

[7]

Kawada K., Wooley T. D.. On the Waring-Goldbach problem for fourth and fifth powers. Proceedings of the London Mathematical Society, 2001, 83(1): 1-50

[8]

Sinnadurai J. St.-C. L.. Representation of integers as sums of six cubes and one square. Q. J. Math. Oxf. Ser., 1965, 16(2): 289-296

[9]

Stanley G. K.. The representation of a number as the sum of one square and a number of k-th powers. Proc. Lond. Math. Soc., 1930, 31(2): 512-553

[10]

Titchmarsh E. C.. The Theory of the Riemann Zeta-Function, 1951, Oxford: Clarendon Press

[11]

Vaughan R. C.. The Hardy-Littlewood method, 1997, Cambridge: Cambridge University Press

[12]

Vinogradov I. M.. Elements of Number Theory, 1954, New York: Dover Publications

AI Summary AI Mindmap
PDF

136

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/