Joint Reducing Subspaces of Multiplication Operators and Weight of Multi-variable Bergman Spaces

Hansong Huang , Peng Ling

Chinese Annals of Mathematics, Series B ›› 2019, Vol. 40 ›› Issue (2) : 187 -198.

PDF
Chinese Annals of Mathematics, Series B ›› 2019, Vol. 40 ›› Issue (2) : 187 -198. DOI: 10.1007/s11401-019-0125-9
Article

Joint Reducing Subspaces of Multiplication Operators and Weight of Multi-variable Bergman Spaces

Author information +
History +
PDF

Abstract

This paper mainly concerns a tuple of multiplication operators defined on the weighted and unweighted multi-variable Bergman spaces, their joint reducing subspaces and the von Neumann algebra generated by the orthogonal projections onto these subspaces. It is found that the weights play an important role in the structures of lattices of joint reducing subspaces and of associated von Neumann algebras. Also, a class of special weights is taken into account. Under a mild condition it is proved that if those multiplication operators are defined by the same symbols, then the corresponding von Neumann algebras are *-isomorphic to the one defined on the unweighted Bergman space.

Keywords

Joint reducing subspaces / Von Neumann algebras / Weighted Bergman spaces

Cite this article

Download citation ▾
Hansong Huang, Peng Ling. Joint Reducing Subspaces of Multiplication Operators and Weight of Multi-variable Bergman Spaces. Chinese Annals of Mathematics, Series B, 2019, 40(2): 187-198 DOI:10.1007/s11401-019-0125-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Arveson W.. An Invitation to C*-Algebras, 1998, New York: Springer-Verlag

[2]

Arveson W.. A Short Course on Spectral Theory, 2001, New York: Springer-Verlag

[3]

Bell S.. The Bergman kernel function and proper holomorphic mappings. Trans. Amer. Math. Soc., 1982, 270: 685-691

[4]

Bjorn A.. Removable singularities for weighted Bergman spaces. Czechoslovak Mathematical Journal, 2006, 56: 179-227

[5]

Bochner S.. Weak solutions of linear partial differential equations. J. Math. Pure Appl., 1956, 35: 193-202

[6]

Carleson L.. Selected Problems on Exceptional Sets, 1967, Princeton, NJ: Van Nostrand

[7]

Cowen C.. The commutant of an analytic Toeplitz operator. Trans. Amer. Math. Soc., 1978, 239: 1-31

[8]

Cowen C.. The commutant of an analytic Toeplitz operator, II. Indiana Univ. Math. J., 1980, 29: 1-12

[9]

Cowen C.. An analytic Toeplitz operator that commutes with a compact operator and a related class of Toeplitz operators. J. Funct. Anal., 1980, 36: 169-184

[10]

Cowen, C. and Wahl, R., Commutants of finite Blaschke product multiplication operators, preprint.

[11]

Dan H., Huang H.. Multiplication operators defined by a class of polynomials on $L_a^2(\mathbb{D}^2)$. Integr. Equ. Oper. Theory, 2014, 80: 581-601

[12]

Douglas R., Putinar M., Wang K.. Reducing subspaces for analytic multipliers of the Bergman space. J. Funct. Anal., 2012, 263: 1744-1765

[13]

Douglas R., Sun S., Zheng D.. Multiplication operators on the Bergman space via analytic continuation. Adv. Math., 2011, 226: 541-583

[14]

Guo K., Huang H.. On multiplication operators of the Bergman space: Similarity, unitary equivalence and reducing subspaces. J. Operator Theory, 2011, 65: 355-378

[15]

Guo K., Huang H.. Multiplication operators defined by covering maps on the Bergman space: The connection between operator theory and von Neumann algebras. J. Funct. Anal., 2011, 260: 1219-1255

[16]

Guo K., Huang H.. Geometric constructions of thin Blaschke products and reducing subspace problem. Proc. London Math. Soc., 2014, 109: 1050-1091

[17]

Guo K., Huang H.. Multiplication Operators on the Bergman Space, Lecture Notes in Mathematics, 2015, Heidelberg: Springer-Verlag

[18]

Guo K., Sun S., Zheng D., Zhong C.. Multiplication operators on the Bergman space via the Hardy space of the bidisk. J. Reine Angew. Math., 2009, 629: 129-168

[19]

Guo K., Wang X.. Reducing subspaces of tensor products of weighted shifts. Sci. China Ser. A, 2016, 59: 715-730

[20]

Huang H., Zheng D.. Multiplication operators on the Bergman space of bounded domains in ℂ d, 2015

[21]

Lu Y., Zhou X.. Invariant subspaces and reducing subspaces of weighted Bergman space over bidisk. J. Math. Soc. Japan, 2010, 62(3): 745-765

[22]

Rudin W.. Real and Complex Analysis, 1987, New York: McGraw-Hill Book Co.

[23]

Shi Y., Lu Y.. Reducing subspaces for Toeplitz operators on the polydisk. Bull. Korean Math. Soc., 2013, 50: 687-696

[24]

Sun S., Zheng D., Zhong C.. Classification of reducing subspaces of a class of multiplication operators via the Hardy space of the bidisk. Canad. J. Math., 2010, 62: 415-438

[25]

Thomson J.. The commutant of a class of analytic Toeplitz operators, II. Indiana Univ. Math. J., 1976, 25: 793-800

[26]

Thomson J.. The commutant of a class of analytic Toeplitz operators. Amer. J. Math., 1977, 99: 522-529

[27]

Tikaradze A.. Multiplication operators on the Bergman spaces of pseudoconvex domains. New York J. Math., 2015, 21: 1327-1345

[28]

Wang X., Dan H., Huang H.. Reducing subspaces of multiplication operators with the symbol αz k + βw l on $L_a^2(\mathbb{D}^2)$. Sci. China Ser. A, 2015, 58: 1-14

AI Summary AI Mindmap
PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/