PDF
Abstract
A recent joint paper with Doina Cioranescu and Julia Orlik was concerned with the homogenization of a linearized elasticity problem with inclusions and cracks (see [Cioranescu, D., Damlamian, A. and Orlik, J., Homogenization via unfolding in periodic elasticity with contact on closed and open cracks, Asymptotic Analysis, 82, 2013, 201–232]). It required uniform estimates with respect to the homogenization parameter. A Korn inequality was used which involves unilateral terms on the boundaries where a nopenetration condition is imposed. In this paper, the author presents a general method to obtain many diverse Korn inequalities including the unilateral inequalities used in [Cioranescu, D., Damlamian, A. and Orlik, J., Homogenization via unfolding in periodic elasticity with contact on closed and open cracks, Asymptotic Analysis, 82, 2013, 201–232]. A preliminary version was presented in [Damlamian, A., Some unilateral Korn inequalities with application to a contact problem with inclusions, C. R. Acad. Sci. Paris, Ser. I, 350, 2012, 861–865].
Keywords
Korn domains
/
Korn-Wirtinger domains
/
Unilateral Korn inequality
Cite this article
Download citation ▾
Alain Damlamian.
Some Remarks on Korn Inequalities.
Chinese Annals of Mathematics, Series B, 2018, 39(2): 335-344 DOI:10.1007/s11401-018-1067-3
| [1] |
Ciarlet P., Ciarlet P. G.. Another approach to linearized elasticity and a new proof of Korn’s inequality. Mathematical Models and Methods in Applied Sciences, 2005, 15(2): 259-271
|
| [2] |
Cioranescu D., Damlamian A., Orlik J.. Homogenization via unfolding in periodic elasticity with contact on closed and open cracks. Asymptotic Analysis, 2013, 82: 201-232
|
| [3] |
Damlamian A.. Some unilateral Korn inequalities with application to a contact problem with inclusions. C. R. Acad. Sci. Paris, Ser. I, 2012, 350: 861-865
|
| [4] |
Eck C., Jarušek J., Krbec M.. Unilateral Contact Problems: Variational Methods and Existence Theorems, 2005, Boca Raton: CRC Press
|
| [5] |
Fichera G.. Sul problema elastostatico di Signorini con ambigue condizioni al contorno. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 1963, 34(8): 138-142
|
| [6] |
Fichera G.. Problemi elastostatici con vincoli unilaterali: Il problema di Signorini con ambigue condizioni al contorno. Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. I, 1964, 7(8): 91-140
|
| [7] |
Fichera G.. Elastostatics problems with unilateral constraints. Séminaire Jean Leray, 1967, 3: 64-68
|
| [8] |
Fichera G.. Unilateral constraints in elasticity. Actes, Congrès Intern. Math. Nice, 1970, 3: 7
|
| [9] |
Gobert J.. Une inégalité fondamentale de la théorie de l’élasticité. Bull. Soc. Roy. Sci. Liège, 1962, 31: 182-191
|
| [10] |
Griso G.. Decompositions of displacements of thin structures. J. Math. Pures Appl., 2008, 89: 199-223
|
| [11] |
Hlaváček I., Haslinger J., Nečas J., Lovíček J.. Solution of Variational Inequalities in Mechanics, 1988, New York, Berlin, Heidelberg, London Paris, Tokyo: Springer-Verlag
|
| [12] |
Kikuchi N., Oden J. T.. Contact problems in elasticity. SIAM Studies in Applied Mathematics, 1988, Philadelphia: SIAM
|
| [13] |
Oleinik O. A., Shamaev A. S., Yosifian G. A.. Mathematical Problems in Elasticity and Homogenization, 1992, Amsterdam: North-Holland
|