Serendipity Virtual Elements for General Elliptic Equations in Three Dimensions

Lourenço Beirão Da Veiga , Franco Brezzi , Franco Dassi , Luisa Donatelia Marini , Alessandro Russo

Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (2) : 315 -334.

PDF
Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (2) : 315 -334. DOI: 10.1007/s11401-018-1066-4
Article

Serendipity Virtual Elements for General Elliptic Equations in Three Dimensions

Author information +
History +
PDF

Abstract

The authors study the use of the virtual element method (VEM for short) of order k for general second order elliptic problems with variable coefficients in three space dimensions. Moreover, they investigate numerically also the serendipity version of the VEM and the associated computational gain in terms of degrees of freedom.

Keywords

Virtual element methods / Polyhedral decompositions / Linear elliptic problems / Serendipity

Cite this article

Download citation ▾
Lourenço Beirão Da Veiga, Franco Brezzi, Franco Dassi, Luisa Donatelia Marini, Alessandro Russo. Serendipity Virtual Elements for General Elliptic Equations in Three Dimensions. Chinese Annals of Mathematics, Series B, 2018, 39(2): 315-334 DOI:10.1007/s11401-018-1066-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ahmad B., Alsaedi A., Brezzi F. Equivalent projectors for virtual element methods. Comput. Math. Appl., 2013, 66(3): 376-391

[2]

Antonietti P. F., Beirão da Veiga L., Scacchi S., Verani M.. A C 1 virtual element method for the Cahn-Hilliard equation with polygonal meshes. SIAM J. Numer. Anal., 2016, 54(1): 34-57

[3]

Artioli E., de Miranda C., Lovadina C., Patruno L.. A stress/displacement virtual element method for plane elasticity problems. Computer Methods in Applied Mechanics and Engineering, 2017, 325: 155-174

[4]

Ayuso B., Lipnikov K., Manzini G.. The nonconforming virtual element method. ESAIM: M2AN, 2016, 50(3): 879-904

[5]

Beirão da Veiga L., Brezzi F., Cangiani A. Basic principles of virtual element methods. Math. Models Methods Appl. Sci., 2013, 23(1): 199-214

[6]

Beirão da Veiga L., Brezzi F., Dassi F. Virtual element approximation of 2d magnetostatic problems. Comput. Methods Appl. Mech. Engrg., 2017, 327: 173-195

[7]

Beirão da Veiga L., Brezzi F., Marini L. D., Russo A.. The hitchhiker’s guide to the virtual element method. Math. Models Methods Appl. Sci., 2014, 24(8): 1541-1573

[8]

Beirão da Veiga L., Brezzi F., Marini L. D., Russo A.. Virtual element methods for general second order elliptic problems on polygonal meshes. Math. Models Methods Appl. Sci., 2016, 26(4): 729-750

[9]

Beirão da Veiga L., Brezzi F., Marini L. D., Russo A.. Serendipity nodal VEM spaces. Comp. Fluids, 2016, 141: 2-12

[10]

Beirão da Veiga L., Dassi F., Russo A.. High-order virtual element method on polyhedral meshes. Computers & Mathematics with Applications, 2017, 74(5): 1110-1122

[11]

Beirão da Veiga L., Lovadina C., Russo A.. Stability analysis for the virtual element method. Math. Models Methods Appl. Sci., 2017, 27(13): 2557-2594

[12]

Beirão da Veiga L., Lovadina C., Vacca G.. Divergence free Virtual Elements for the Stokes problem on polygonal meshes. ESAIM Math. Model. Numer. Anal., 2017, 51: 509-535

[13]

Benedetto M. F., Berrone S., Borio A. A hybrid mortar virtual element method for discrete fracture network simulations. Journal of Computational Physics, 2016, 306: 148-166

[14]

Berrone S., Borio A.. Orthogonal polynomials in badly shaped polygonal elements for the virtual element method. Finite Elem. Anal. Des., 2017, 129: 14-31

[15]

Brenner S., Guan Q., Sung L.. Some estimates for virtual element methods. Computational Methods in Applied Mathematics, 2017, 17: 553-574

[16]

Brezzi F., Marini L. D.. Virtual element methods for plate bending problems. Comput. Methods Appl. Mech. Engrg., 2013, 253: 455-462

[17]

Cáceres E., Gatica G. N.. A mixed virtual element method for the pseudostress-velocity formulation of the Stokes problem. IMA J. Numer. Anal., 2017, 37(1): 296-331

[18]

Cangiani A., Georgoulis E. H., Pryer T., Sutton O. J.. A posteriori error estimates for the virtual element method. Numerische Mathematik, 2017, 137: 857-893

[19]

Chi H., Beirão da Veiga L., Paulino G. H.. Some basic formulations of the virtual element method (VEM) for finite deformations. Computer Methods in Applied Mechanics and Engineering, 2017, 318: 148-192

[20]

Ciarlet P. G.. The finite element method for elliptic problems, Studies inMathematics and Its Applications, 1978, Amsterdam, New York, Oxford: North-Holland Publishing Co.

[21]

Du Q., Faber V., Gunzburger M.. Centroidal voronoi tessellations: Applications and algorithms. SIAM Rev., 1999, 41(4): 637-676

[22]

Gain A. L., Paulino G. H., Leonardo S. D., Menezes I. F. M.. Topology optimization using polytopes. Comput. Methods Appl. Mech. Engrg., 2015, 293: 411-430

[23]

Gain A. L., Talischi C., Paulino G. H.. On the Virtual Element Method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes. Comput. Methods Appl. Mech. Engrg., 2014, 282: 132-160

[24]

Mascotto, L., A therapy for the ill-conditioning in the virtual element method, ArXiv: 1705.10581.

[25]

Mascotto, L., Beirão da Veiga, L., Chernov, A. and Russo, A., Exponential convergence of the hp virtual element method with corner singularities, Numer. Math., DOI: 10.1007/s00211-017-0921-7.

[26]

Mascotto L., Dassi F.. Exploring high-order three dimensional virtual elements: Bases and stabilizations, 2017

[27]

Mora D., Rivera G., Rodríguez R.. A virtual element method for the Steklov eigenvalue problem. Math. Models Methods Appl. Sci., 2015, 25(8): 1421-1445

[28]

Rycroft C. H.. Voro++: A three-dimensional voronoi cell library in C++. Chaos, 2009, 19(4): 041111

[29]

Schatz A. H.. An observation concerning Ritz-Galerkin methods with indefinite bilinear forms. Math. Comp., 1974, 28: 959-962

AI Summary AI Mindmap
PDF

152

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/