Internal Controllability for Parabolic Systems Involving Analytic Non-local Terms

Pierre Lissy , Enrique Zuazua

Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (2) : 281 -296.

PDF
Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (2) : 281 -296. DOI: 10.1007/s11401-018-1064-6
Article

Internal Controllability for Parabolic Systems Involving Analytic Non-local Terms

Author information +
History +
PDF

Abstract

This paper deals with the problem of internal controllability of a system of heat equations posed on a bounded domain with Dirichlet boundary conditions and perturbed with analytic non-local coupling terms. Each component of the system may be controlled in a different subdomain. Assuming that the unperturbed system is controllable—a property that has been recently characterized in terms of a Kalman-like rank condition—the authors give a necessary and sufficient condition for the controllability of the coupled system under the form of a unique continuation property for the corresponding elliptic eigenvalue system. The proof relies on a compactness-uniqueness argument, which is quite unusual in the context of parabolic systems, previously developed for scalar parabolic equations. The general result is illustrated by two simple examples.

Keywords

Parabolic systems / Non-local potentials / Analyticity / Null controllability / Kalman rank condition / Spectral unique continuation

Cite this article

Download citation ▾
Pierre Lissy, Enrique Zuazua. Internal Controllability for Parabolic Systems Involving Analytic Non-local Terms. Chinese Annals of Mathematics, Series B, 2018, 39(2): 281-296 DOI:10.1007/s11401-018-1064-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ammar-Khodja F., Benabdallah A., González-Burgos M., de Teresa L.. Recent results on the controllability of linear coupled parabolic problems: A survey. Mathematical Control and Related Fields, 2011, 1(3): 267-306

[2]

Ammar-Khodja F., Benabdallah A., González-Burgos M., de Teresa L.. The Kalman condition for the boundary controllability of coupled parabolic systems, bounds on biorthogonal families to complex matrix exponentials. J. Math. Pures Appl. (9), 2011, 96(6): 555-590

[3]

Ammar-Khodja F., Benabdallah A., González-Burgos M., de Teresa L.. Minimal time for the null controllability of parabolic systems: The effect of the condensation index of complex sequences. J. Funct. Anal., 2014, 267(7): 2077-2151

[4]

Ammar Khodja F., Benabdallah A., González-Burgos M., de Teresa L.. New phenomena for the null controllability of parabolic systems: Minimal time and geometrical dependence. J. Math. Anal. Appl., 2016, 444(2): 1071-1113

[5]

Benabdallah A., Boyer F., González-Burgos M., Olive G.. Sharp estimates of the one-dimensional boundary control cost for parabolic systems and application to the N-dimensional boundary null controllability in cylindrical domains. SIAM J. Control Optim., 2014, 52(5): 2970-3001

[6]

Boyer F., Olive G.. Approximate controllability conditions for some linear 1D parabolic systems with space-dependent coefficients. Math. Control Relat. Fields, 2014, 4(3): 263-287

[7]

Ciarlet P. G.. Linear and Nonlinear Functional Analysis with Applications, Society for Industrial and Applied Mathematics, 2013, PA: Philadelphia

[8]

Coron J.-M., Guerrero S., Rosier L.. Null controllability of a parabolic system with a cubic coupling term. SIAM Journal on Control and Optimization, 2010, 48(8): 5629-5653

[9]

Coron J.-M., Guilleron J.-P.. Control of three heat equations coupled with two cubic nonlinearities. SIAM J. Control Optim., 2016, 55(2): 989-1019

[10]

Duprez M., Lissy P.. Indirect controllability of some linear parabolic systems of m equations with m − 1 controls involving coupling terms of zero or first order. J. Math. Pures Appl. (9), 2016, 106(5): 905-934

[11]

Duprez M., Lissy P.. Positive and negative results on the internal controllability of parabolic equations coupled by zero and first order terms. J. Evol. Equ., 2016 1-22

[12]

Ervedoza S., Zuazua E.. Sharp observability estimates for heat equations. Archive for Rational Mechanics and Analysis, 2011, 202: 975-1017

[13]

Fattorini H. O.. Some remarks on complete controllability. SIAM J. Control, 1966, 4(4): 686-694

[14]

Fernández-Cara E., González-Burgos M., de Teresa L.. Controllability of linear and semilinear nondiagonalizable parabolic systems. ESAIM Control Optim. Calc. Var., 2015, 21(4): 1178-1204

[15]

Fernández-Cara E., Q., Zuazua E.. Null controllability of linear heat and wave equations with nonlocal spatial terms. SIAM J. Control Optim., 2016, 54(4): 2009-2019

[16]

Fernández-Cara E., Zuazua E.. The cost of approximate controllability for heat equations: The linear case. Adv. Differential Equations, 2000, 5(4–6): 465-514

[17]

Ladyzenskaja O. A., Solonnikov V. A., Ural’ceva N. N.. Linear and quasilinear equations of parabolic type, 1968, Providence, R I.: American Mathematical Society

[18]

Léautaud M.. Spectral inequalities for non-selfadjoint elliptic operators and application to the nullcontrollability of parabolic systems. J. Funct. Anal., 2010, 258(8): 2739-2778

[19]

Lions J.-L.. Exact controllability, stabilization and perturbations for distributed systems. SIAM Rev., 1988, 30(1): 1-68

[20]

Lorenzi A.. Two severely ill-posed linear parabolic problems, Alexandru Myller Mathematical Seminar. AIP Conf. Proc., 1329, Amer. Inst. Phys., Melville, NY, 2011 150-169

[21]

Lissy P., Zuazua E.. Internal observability for coupled systems of linear partial differential equations, 2017

[22]

Micu S., Takahashi T.. Local controllability to stationary trajectories of a one-dimensional simplified model arising in turbulence, 2017

[23]

Miller L.. A direct Lebeau-Robbiano strategy for the observability of heat-like semigroups. Discrete Con- tin. Dyn. Syst. Ser. B, 2010, 14(4): 1465-1485

[24]

Okubo A., Levin S. A.. Diffusion and Ecological Problems: Modern Perspectives, Interdisciplinary Applied Mathematics, 2001, New York: Springer-Verlag

[25]

Russell D. L.. Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions. SIAM Rev., 1978, 20(4): 639-739

[26]

Zuazua E.. Stable observation of additive superpositions of partial differential equations. Systems Control Lett., 2016, 93: 21-29

AI Summary AI Mindmap
PDF

143

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/