Internal Controllability for Parabolic Systems Involving Analytic Non-local Terms
Pierre Lissy , Enrique Zuazua
Chinese Annals of Mathematics, Series B ›› 2018, Vol. 39 ›› Issue (2) : 281 -296.
Internal Controllability for Parabolic Systems Involving Analytic Non-local Terms
This paper deals with the problem of internal controllability of a system of heat equations posed on a bounded domain with Dirichlet boundary conditions and perturbed with analytic non-local coupling terms. Each component of the system may be controlled in a different subdomain. Assuming that the unperturbed system is controllable—a property that has been recently characterized in terms of a Kalman-like rank condition—the authors give a necessary and sufficient condition for the controllability of the coupled system under the form of a unique continuation property for the corresponding elliptic eigenvalue system. The proof relies on a compactness-uniqueness argument, which is quite unusual in the context of parabolic systems, previously developed for scalar parabolic equations. The general result is illustrated by two simple examples.
Parabolic systems / Non-local potentials / Analyticity / Null controllability / Kalman rank condition / Spectral unique continuation
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
/
| 〈 |
|
〉 |